MEMS技术在非制冷红外探测器中的应用.doc

MEMS技术在非制冷红外探测器中的应用.doc

ID:59120380

大小:122.00 KB

页数:6页

时间:2020-09-15

MEMS技术在非制冷红外探测器中的应用.doc_第1页
MEMS技术在非制冷红外探测器中的应用.doc_第2页
MEMS技术在非制冷红外探测器中的应用.doc_第3页
MEMS技术在非制冷红外探测器中的应用.doc_第4页
MEMS技术在非制冷红外探测器中的应用.doc_第5页
资源描述:

《MEMS技术在非制冷红外探测器中的应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、MEMS技术在非制冷红外探测器中的应用 慧聪网   2005年3月3日14时39分   信息来源:半导体技术   网友评论0条 进入论坛 1引言   微电子机械系统(MEMS)技术作为一项新兴的微细加工技术,已开始在各领域应用。它可将信息获取、处理和执行等功能集成,具有微小、智能、可执行、可集成、工艺兼容性好、成本低等优点,在红外探测技术领域也有非常广泛的应用前景,将为该领域的研究提供一条更新的途径。将MEMS技术用于非制冷红外探测器的研制能够使器件向高可靠性、微型化、智能化、高密度阵列集成和低成本、可批量生产等方向发展,并有可能利用该技

2、术制造出具有全新机理的非制冷红外探测器。   红外探测器是红外仪器中最基本的关键部件,是红外装置的心脏。红外技术的发展水平,是以红外探测器的发展为主要标志的。,60年代以前,红外探测器主要为单元探测器,实现红外成像需要二维光机扫描;70年代出现线列多元红外探测器,实现红外成像只要一维光机扫描;进入80年代以后,开发了焦平面器件,可以不用光机扫描,直接凝视成像。但由于一直以来,量子型红外系统必须低温制冷才能获得所希望的系统应用性能,而这种要求带来了系统可靠性和成本昂贵等问题,使其应用受到很大的限制。近年来,随着各种新技术的研发,特别是MEM

3、S技术的应用,使得可在室温下工作的非制冷红外探测器的整机性能及可靠性有了大幅度提高,而且由于该系统小型便于携带,使用方便灵活,成本低,进一步促进了非制冷红外探测器的应用与发展。本文综述了MEMS技术的工艺及主要特点,详细介绍了其有代表性的非制冷红外探测器的具体应用及工艺结构的制作。对它们的性能及成本等方面做了详细的比较,并对当前应用MEMS技术在非制冷红外探测器中所取得的最新成果做了简略的介绍。2HEHS技术简介   MEMS技术是在微电子制造工艺基础上吸收融合其它加工工艺技术逐渐发展起来的。它是实现微型传感器、微型执行器、微能源及电子线

4、路集成为一体的新兴特殊微加工技术r3),由较小的0.5~500gm的可动子元件构成的器件系统。60年代初开发出了MEMS的重要技术一一晶体各向异性腐蚀和阳极键合技术;80年代末开发出LIGA技术,并取得初步成果,研制出了齿轮、曲柄、弹簧和微型电极以及更为复杂的MEMS;90年代,MEMS技术已经进入实际应用,如汽车防撞气囊用的加速度传感器,成本仅为5美元左右。   通常,MEMS技术可分为体微机械加工(腐蚀、镀膜、掺杂、键合)、表面微加工、高深宽比微加工及超微精密加工等,同时还借助了一些成熟的半导体工艺,如光刻、氧化、扩散、离子注入、溅射

5、、外延生长和淀积等技术。目前加工材料以硅基为主,同时对金属、玻璃、陶瓷、塑料和Ⅲ,V族化合物等材料的研究也逐渐增多。   微电子技术是MEMS技术的重要基础,其加工手段是MEMS技术重要加工手段之一。MEMS也有它自己的特点,如工艺多样化,能制作梁、隔膜、凹槽、孔、密封洞、锥、针尖、弹簧及所构成的复杂机械结构,同时它能与微电子工艺兼容,器件实现批量生产,成本降低。MEMS技术几乎可应用到各个领域,尤其是要求小尺寸、高精度、高可靠性及低功耗的高科技领域。3MEMS技术在非制冷红外探测器中的应用   近年来,MEMS技术得到了迅速发展,将其应

6、用于非制冷红外探测器有了比较成功的例子,为现有单元器件小型化和高密度阵列集成开辟了一条新的途径。3.1微机械红外热电堆探测器   红外热电堆探测器的工作原理为塞贝克效应(Seebeckeffect)。早先的红外热电堆探测器是利用掩膜真空镀膜的方法,将热电偶材料沉积到塑料或陶瓷衬底上获得的,但器件的尺寸较大,且不易批量生产。随着MEMS技术的应用,出现了微机械红外热电堆探测器。K.D.Wise等人,最先利用MEMS技术于20世纪80年代初制造获得了硅基红外热电堆探测器。   微机械红外热电堆芯片的基本结构如图1所示'刮。器件制作一般采用体硅

7、,从硅片背面利用硅的各向异性腐蚀而得到呈金字塔型的腐蚀孔,侧壁为慢腐蚀面(111)。现在主要通过薄膜结构来实现热结区与冷结区的隔热结构。应用的薄膜结构有两类,即封闭膜结构(图1(a))和悬梁结构(图1(b)),其中封闭膜是指热堆的支撑膜为整层的复合介质膜,一般为氮化硅膜或氮化硅与氧化硅复合膜。悬梁则是指周围为气氛介质所包围,一端固支、一端悬空的膜结构。从隔热效果来说,悬梁比封闭膜更具优势,因为在封闭膜结构中热可以沿着介质支撑膜传播,而并不完全沿着热偶对传播,使热耗散较大,热电转换效率低,灵敏度小。但从工艺制造过程以及成品率角度来说,封闭膜

8、更具优势,因为这种膜结构的优点在于结构稳定,由于膜与基体处处相连,因此受应力影响小,制造过程中膜本身不易破裂,成品率高,易制造而悬梁与基体间只通过固支一端相连,另一端悬空,因此受应力的影响显著

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。