2019年 无约束优化方法ppt课件.ppt

2019年 无约束优化方法ppt课件.ppt

ID:58950385

大小:2.36 MB

页数:107页

时间:2020-09-28

2019年 无约束优化方法ppt课件.ppt_第1页
2019年 无约束优化方法ppt课件.ppt_第2页
2019年 无约束优化方法ppt课件.ppt_第3页
2019年 无约束优化方法ppt课件.ppt_第4页
2019年 无约束优化方法ppt课件.ppt_第5页
2019年 无约束优化方法ppt课件.ppt_第6页
2019年 无约束优化方法ppt课件.ppt_第7页
2019年 无约束优化方法ppt课件.ppt_第8页
2019年 无约束优化方法ppt课件.ppt_第9页
2019年 无约束优化方法ppt课件.ppt_第10页
资源描述:

《2019年 无约束优化方法ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章无约束优化方法第一节概述第1章所列举的机械优化设计问题,都是在一定的限制条件下追求某一指标为最小,它们都属于约束优化问题。约束优化问题的求解——转化为一系列的无约束优化问题实现的。因此,无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。为什么要研究无约束优化问题?(1)有些实际问题,其数学模型本身就是一个无约束优化问题。(2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。(3)约束优化问题的求解可以通过一系列无约束优化方法来达到。所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。

2、(4)对于多维无约束问题来说,古典极值理论中令一阶导数为零,但要求二阶可微,且要判断海赛矩阵为正定才能求得极小点,这种方法有理论意义,但无实用价值。和一维问题一样,若多元函数f(x)不可微,亦无法求解。但古典极值理论是无约束优化方法发展的基础。目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。无约束优化问题是:求n维设计变量使目标函数解析法数值法数学模型复杂时不便求解可以处理复杂函数及没有数学表达式的优化设计问题搜索方向问题是无约束优化方法的关键。各种无约束优化方法的区别:确定搜索方向的方法不同。无约束优化方法

3、分类利用目标函数的一阶或二阶导数利用目标函数值(最速下降法、共轭梯度法、牛顿法)(坐标轮换法、鲍威尔等)搜索方向的构成问题乃是无约束优化方法的关键。用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的(n≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。第二节最速下降法优化设计追求目标函数值最小,若搜索方向取该点的负梯度方向,使函数值在该点附近的范围内下降最快。按此规律不断走步,形成以下迭代算法:以负梯度方向为搜索方向,所以称最速

4、下降法或梯度法。搜索方向确定为负梯度方向,还需确定步长因子即求一维搜索的最佳步长,既有由此可知,在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负梯度方向,因此相邻两个搜索方向互相垂直。在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负梯度方向,因此相邻两个搜索方向互相垂直。这就是说在迭代点向函数极小点靠近的过程,走的是曲折的路线。形成“之”字形的锯齿现象,而且越接近极小点锯齿越细。图4-2最速下降法的搜索路径方法特点(1)初始点可任选,每次迭代计算量小,存储量少,程序简短。即使从一个不好的初始点出发

5、,开始的几步迭代,目标函数值下降很快,然后慢慢逼近局部极小点。(2)任意相邻两点的搜索方向是正交的,它的迭代路径为绕道逼近极小点。当迭代点接近极小点时,步长变得很小,越走越慢。沿负梯度方向进行一维搜索,有为一维搜索最佳步长,应满足极值必要条件例4-1求目标函数的极小点。解取初始点则初始点处函数值及梯度分别为算出一维搜索最佳步长第一次迭代设计点位置和函数值继续作下去,经10次迭代后,得到最优解这个问题的目标函数的等值线为一簇椭圆,迭代点从走的是一段锯齿形路线,见图4-3。11图4-3将上例中目标函数引入变换其等值线由椭圆变成一簇同心圆。仍

6、从即出发进行最速下降法寻优。此时:沿负梯度方向进行一维搜索:则函数f(X)变为:y1=x1,y2=5x2β为一维搜索最佳步长,可由极值条件:由从而算得一步计算后设计点的位置及其目标函数:经变换后,只需一次迭代,就可找到最优解。这是因为经过尺度变换:等值线由椭圆变成圆。梯度法的特点(1)理论明确,程序简单,对初始点要求不严格。(2)对一般函数而言,梯度法的收敛速度并不快,因为最速下降方向仅仅是指某点的一个局部性质。(3)梯度法相邻两次搜索方向的正交性,决定了迭代全过程的搜索路线呈锯齿状,在远离极小点时逼近速度较快,而在接近极小点时逼近速度

7、较慢。(4)梯度法的收敛速度与目标函数的性质密切相关。对于等值线(面)为同心圆(球)的目标函数,一次搜索即可达到极小点。第三节牛顿型方法在第三章中,我们已经讨论了一维搜索的牛顿方法。得出一维情况下的牛顿迭代公式对于多元函数,在泰勒展开,得设为函数的极小点,根据极值的必要条件这是多元函数求极值的牛顿法迭代公式。对于二次函数,海赛矩阵H是一个常矩阵,其中各元素均为常数。因此,无论从任何点出发,只需一步就可找到极小点。例4-2求目标函数的极小点。解取初始点从牛顿法迭代公式的推演中可以看到,迭代点的位置是按照极值条件确定的,其中并未含有沿下降方

8、向搜寻的概念。因此对于非二次函数,如果采用上述牛顿迭代公式,有时会使函数值上升。阻尼牛顿法阻尼因子,沿牛顿方向进行一维搜索的最佳步长,由下式求得:经过一次迭代即求得极小点函数极小值阻尼牛顿法程序框图方法特点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。