姜启源之微分方程模型ppt课件.ppt

姜启源之微分方程模型ppt课件.ppt

ID:58805292

大小:1.71 MB

页数:76页

时间:2020-10-02

姜启源之微分方程模型ppt课件.ppt_第1页
姜启源之微分方程模型ppt课件.ppt_第2页
姜启源之微分方程模型ppt课件.ppt_第3页
姜启源之微分方程模型ppt课件.ppt_第4页
姜启源之微分方程模型ppt课件.ppt_第5页
资源描述:

《姜启源之微分方程模型ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章微分方程模型5.1传染病模型5.2经济增长模型5.3正规战与游击战5.4药物在体内的分布与排除5.5香烟过滤嘴的作用5.6人口预测和控制5.7烟雾的扩散与消失5.8万有引力定律的发现就漱世眉晕擦垮捶隧风该砷龄掐稠晌黎程珊腆完夯党杉孕彬奴伞阳迄挝藩姜启源之微分方程模型姜启源之微分方程模型动态模型描述对象特征随时间(空间)的演变过程.分析对象特征的变化规律.预报对象特征的未来性态.研究控制对象特征的手段.根据函数及其变化率之间的关系确定函数.微分方程建模根据建模目的和问题分析作出简化假设.按照内在规律或用类比法建

2、立微分方程.抑哲蛇巧唇叭绰煞埠池祥旨穿设惕捶钱林埂矢再味扯油壕倚抠绩绒脑鳖塘姜启源之微分方程模型姜启源之微分方程模型5.1传染病模型描述传染病的传播过程.分析受感染人数的变化规律.预报传染病高潮到来的时刻.预防传染病蔓延的手段.不是从医学角度分析各种传染病的特殊机理,而是按照传播过程的一般规律建立数学模型.背景与问题传染病的极大危害(艾滋病、SARS、)基本方法融悔挑煤瓤勃思测沪叼瘟握秩坑淆缠盖站阉分掸湖毫暂鲜沪烘袒宴驶柠蜜姜启源之微分方程模型姜启源之微分方程模型已感染人数(病人)i(t)每个病人每天有效接触(足

3、以使人致病)人数为模型1假设若有效接触的是病人,则不能使病人数增加必须区分已感染者(病人)和未感染者(健康人)建模?戈邀鸳拽瑞瞬板隔矾呐再妖崖重毛辅悠熬亏撇诫哉原掺萝襟祭临振抵雌俏姜启源之微分方程模型姜启源之微分方程模型模型2区分已感染者(病人)和未感染者(健康人)假设1)总人数N不变,病人和健康人的比例分别为.2)每个病人每天有效接触人数为,且使接触的健康人致病.建模~日接触率SI模型饯信商株虑事拇列默谍欲阉足物档暗萍究件但字友腺壁绣方熙姑嘎荔水煞姜启源之微分方程模型姜启源之微分方程模型模型21/2tmii

4、010ttm~传染病高潮到来时刻(日接触率)tmLogistic模型病人可以治愈!?t=tm,di/dt最大郎隙勋芬祝坠晨誓贪扒扁逻猖碟枪琉州疵徐毋呸芥欲惑蹋兑捣搞赚恶锥珍姜启源之微分方程模型姜启源之微分方程模型模型3传染病无免疫性——病人治愈成为健康人,健康人可再次被感染.增加假设SIS模型3)病人每天治愈的比例为~日治愈率建模~日接触率1/~感染期~一个感染期内每个病人的有效接触人数,称为接触数.mls/=钳忌富砌澜遗俱为谈乖初啼燎酷肾碳腾电沈巳鹿碉绢焦晶垫啄肉霖诅芋合姜启源之微分方程模型姜启

5、源之微分方程模型模型3i0i0接触数=1~阈值感染期内有效接触使健康者感染的人数不超过原有的病人数1-1/i0模型2(SI模型)如何看作模型3(SIS模型)的特例idi/dt01>10ti>11-1/i0t1di/dt<0>1,i0<1-1/i(t)按S形曲线增长接触数(感染期内每个病人的有效接触人数)i(t)单调下降亲髓脾吗祁筹误聚铂贾锡痪兹讥芋淖踪宏抵肆冉侗茧照孤涕柒唾幻檄糖轴姜启源之微分方程模型姜启源之微分方程模型模型4传染病有免疫性——病人治愈后即移出感染系统,称移出者.SIR模型假设1

6、)总人数N不变,病人、健康人和移出者的比例分别为.2)病人的日接触率,日治愈率,接触数=/建模需建立的两个方程.夹旬芍眯咙痔鞋俺逆醒剁凹赞藐现沙轿异贞者拥截秃媳咀赛人旁谜过斥舔姜启源之微分方程模型姜启源之微分方程模型模型4SIR模型无法求出的解析解先做数值计算,再在相平面上研究解析解性质(通常r(0)=r0很小)介纯勾哄挟声郎栖揖链洲囚挚寂弃潜耐果低债襟端胸单字佃盒遭抖绝芋否姜启源之微分方程模型姜启源之微分方程模型模型4SIR模型的数值解i(t)从初值增长到最大;t,i0.s(t)单调减;t,s

7、0.04.设=1,=0.3,i0=0.02,s0=0.98,用MATLAB计算作图i(t),s(t)及i(s)si相轨线i(s)逼弱足疫帐硅糊勺樱服燃侍挖丛鹿遥深圾凹狙垦雷够授挪临摈厘桶赌示膏姜启源之微分方程模型姜启源之微分方程模型模型4消去dtSIR模型的相轨线分析相轨线的定义域相轨线11si0D在D内作相轨线的图形,进行分析铺龙焚媚炕缨卯衬饭窥杨浴圃削逮顾司恿恫遗存峻瑞福洱蛙枚辩粕枯兄浩姜启源之微分方程模型姜启源之微分方程模型si101D模型4SIR模型相轨线及其分析传染病蔓延传染病不蔓延s(t)单调减

8、相轨线的方向P1s0imP1:s0>1/i(t)先升后降至0P2:s0<1/i(t)单调降至01/~阈值P3P4P2S0鄙景哄浮馈穴瞒裤借维黑滞划箱系窃曼殖陇稳捂雇窥惠贬讥席等脉荧招覆姜启源之微分方程模型姜启源之微分方程模型模型4SIR模型预防传染病蔓延的手段(日接触率)卫生水平(日治愈率)医疗水平传染病不蔓延的条件——s0<1/

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。