欢迎来到天天文库
浏览记录
ID:58719373
大小:1.00 MB
页数:50页
时间:2020-10-04
《神经网络课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、PerceptronsandBPnetworksLectureNoteZhaoJieYuComputerScienceDepartmentNingboUniversityPerceptronThesimplestformofaneuralnetworkconsistsofasingleneuronwithadjustablesynapticweightsandbias.performspatternclassificationwithonlytwoclassesperceptronconvergencetheorem:Patterns(vectors)aredrawnf
2、romtwolinearlyseparableclassesDuringtraining,theperceptronalgorithmconvergesandpositionsthedecisionsurfaceintheformofhyperplanebetweentwoclassesbyadjustingsynapticweightsWithmorethanoneneuronatoutputlayer,wemaycorrespondinglyformclassificationwithmorethantwoclasseswhicharelinearlyseparab
3、leInputsignalSynapticweightsSummingfunctionBiasbActivationfunctionLocalFieldvOutputyx1x2xmw2wmw1McCulloch—Pitts(M-P)模型TypesofActivationFunctioniniOj+1iniOj+1tThresholdFunction阈值函数Piecewise-linearFunction非线性斜面函数SigmoidFunctionS形函数(Logistic)iniOj+1t对称性激活函数vi+1-1SignumFunctionvi+1Hyperbolic
4、tangentFunctionNetworkArchitecture网络结构Single-layerFeedforwardNetworks(单层前向)inputlayerandoutputlayersingle(computation)layerfeedforward,acyclicMultilayerFeedforwardNetworks(多层前向)hiddenlayers-hiddenneuronsandhiddenunitsenablestoextracthighorderstatistics10-4-2network,100-30-10-3networkfull
5、yconnectedlayerednetworkRecurrentNetworks(反馈网络)atleastonefeedbackloopwithorwithouthiddenneuronSinglelayerMultiplelayerfullyconnectedRecurrentnetworkwithouthiddenunitsinputsoutputsRecurrentnetworkwithhiddenunitsUnitdelayoperator不同的网络结构感知机210.50.8b=-1w1x1+w2x2+b>0?1,02*(0.5)+1*(0.8)+(-1)=0
6、.8>0,O=10.5x1+0.8x2-1=0决策线OXORProblem:InputsOutputx1x2y000011101110W?B?XORnetwork:output0/1typeLearningProcedure:Randomlyassignweights(between0-1)PresentinputsfromtrainingdataGetoutputO,nudgeweightstogivesresultstowardourdesiredoutputTRepeat;stopwhennoerrors,orenoughepochscompletedPercep
7、tron(I)GoalclassifyingappliedInputintooneoftwoclassesProcedureifoutputofhardlimiteris+1,toclassifitis-1,toclass(±1type)inputofhardlimiter:weightedsumofinputeffectofbiasbismerelytoshiftdecisionboundaryawayfromoriginsynapticweightsadaptedoniterationbyiterationbasisPerceptro
此文档下载收益归作者所有