遗传算法用于函数优化.docx

遗传算法用于函数优化.docx

ID:58647549

大小:88.86 KB

页数:17页

时间:2020-10-16

遗传算法用于函数优化.docx_第1页
遗传算法用于函数优化.docx_第2页
遗传算法用于函数优化.docx_第3页
遗传算法用于函数优化.docx_第4页
遗传算法用于函数优化.docx_第5页
资源描述:

《遗传算法用于函数优化.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、遗传算法用于函数优化遗传算法用于函数优化求解一、实验目的本实验要求在掌握遗传算法的基本思想、原理和算法流程的基础上,能够针对指定的单变量优化目标函数,设计相应的遗传算法优化程序,并求得全局最优解。二、实验要求针对目标函数,设计利用遗传算法进行优化求解的程序,绘制迭代过程中最优解的变化情况,并分别改变算法中的编码位数、种群规模、交叉和变异概率,分析这些变量对算法精度及收敛性的影响。三、实验步骤1、初始化种群,确定种群规模M=20,编码位数n=5和编码机制(二进制编码);初始化种群:E=round(rand(M,n));每个编码对应的二进制数值:为第i位

2、二进制代码;二进制数y转换为十进制数x:;2、根据给定的目标函数,计算各个种群的适应度值;3、采用轮盘选择法对种群进行选择复制;4、设定交叉概率为0.9,进行遗传操作(交叉);5、设定变异概率0.05,进行遗传操作(变异);6、产生下一代种群,与终止条件比较,不满足返回到步骤2直到满足条件退出。算法的流程如图7.1所示。NY结束输出结果迭代次数达上限?开始初始化种群(编码)计算适应度函数交叉、变异选择、复制达到系统指标?图7.1算法流程图四、实验结果及分析我们采用遗传算法来寻求目标函数的最大值。初始化样本个数为20个,编码位数为5位,采用二进制编码,

3、交叉概率为0.9,变异概率为0.05,最大迭代次数为1000次,初始样本随机选择,当父代与子代间适应度变化小于0.001时,达到系统指标。MATLAB模拟运行输出迭代种群的平均适应度变化、种群的最优解与最差解,绘出图像(见图1),计算运行时间的平均值(见表1),由表可知,平均运行时间约为0.65秒左右,速度较快。由图可知,前期平均适应度是不断上升的,到达一定程度后即平均适应度在0.9以上后,就基本处于波动平衡状态。通过对遗传算法的分析,这是因为种群内的所有个体几乎都已经接近最优值,上升空间比较小,且由于有变异的可能性,所以平均适应度在后期处于波动状态

4、。由图可发现,每代的最大值都差不多,几乎都是1,但每代的最小值的变化就比较多了,但从趋势可以基本看出,最小值在逐渐变大,向最大值靠拢。因为要找的最优解是最大值,所以在迭代过程中,最小值淘汰几率最大,它的基因难以遗传下来,因此最小值会逐渐变大。图1表1次数第一次第二次第三次第四次第五次平均时间(s)0.7000.6210.6220.5980.6690.642最大值10.99610.99610.99610.99610.99688最小值0.85940.80860.85940.80860.33980.73516改变初始种群的规模,其他参数不变,多次运行程序,

5、观察初始种群规模大小对此算法的影响。图2为种群规模为10时,种群适应度的变化及每代最大值和最小值,由图可看到,平均适应度大的趋势是上升的,虽然过程中有些因为变异引起的曲折,每代的最大值基本相似,但最小值是近似地随着平均适应度的曲线变化的,可以推测,最小值影响了平均适应度。表2是种群规模为10时,其每次运行时间和得到的最终最大值最小值,由表可见,运行平均时间为0.6s左右,最终获得的最大值和最小值差距极小,且获得最大值与实际目标函数的最大值差距较大。图3与表3为种群规模为200时的情况,从图中可发现,平均适应度上升较缓,波动较小,且每代最大值最小值差距

6、较大,又由表3可看出,其运行时间为0.75s左右,每次运行最终最大值几乎都为1,最小值接近0,与目标函数的最大值基本相同。对比种群规模分别为10(图2,表2),20(图1,表1),200(图3,表3),可以发现,种群规模越大,平均适应度的波动越小,上升坡度越平缓,且最终获得的最大值和最小值的差别越大,最大值越接近目标函数的实际最大值。由此可分析出,当种群规模小时,单个个体的基因对整个群体的适应度影响比较大,因此只有当整个群体中适应度最差的个体也达到一个较高适应度后,才达到系统标准(这一代与上一代的平均适应度差小于0.001),退出循环,而这样,最终的

7、最小值就会接近最大值,种群内部每个个体的差别很小,最大值很难达到目标函数的最大值。而当种群规模大时,单个个体的基因对整个群体的适应度就没有那么大的影响,只要大多数个体的基因达到较高适应度,就能够满足系统标准,退出循环,因此每次迭代的最高适应度的个体与最低适应度的个体几乎可以共存,最终获得的最大值几乎就是目标函数的最大值,最小值也接近目标函数的小的值。图2表2次数(M=10)第一次第二次第三次第四次第五次平均时间(s)0.5700.6540.6110.5900.5890.6028最大值0.96480.96480.93750.99610.90230.95

8、31最小值0.96480.80860.93750.98440.90230.91952图3表3次数(M=200

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。