欢迎来到天天文库
浏览记录
ID:58626816
大小:47.13 KB
页数:5页
时间:2020-10-17
《复合函数的导数练习题.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、'.函数求导1.简单函数的定义求导的方法(一差、二比、三取极限)(1)求函数的增量yf(x0x)f(x0);yf(x0x)f(x0)(2)求平均变化率。xx'f(x0x)f(x0)(3)取极限求导数f(x0)limx0x'2.导数与导函数的关系:特殊与一般的关系。函数在某一点f(x0)的导数就是导函数f(x),当xx0时的函数值。3.常用的导数公式及求导法则:(1)公式''①C0,(C是常数)②(sinx)cosx'n'n1③(cosx)sinx④(x)nxx'xx'x⑤(a)alna⑥(e)e'1'1⑦(logax)⑧(lnx)xlnax'1
2、'1⑨(tanx)⑩(cotx)22cosxsinx'''(2)法则:[f(x)g(x)][f(x)][g(x)],'''[f(x)g(x)]f(x)g(x)g(x)f(x)''f(x)'f(x)g(x)g(x)f(x)[]2g(x)g(x)例:32sinx(1)yxx4(2)yx2(3)y3cosx4sinx(4)y2x3(5)ylnx2;.'.复合函数的导数如果函数(x)在点x处可导,函数f(u)在点u=(x)处可导,则复合函数y=f(u)=f[(x)]在点x处也可导,并且(f[(x)])ˊ=f(x)(x)或记作y=y?uxux熟记链式法则
3、若y=f(u),u=(x)y=f[(x)],则y=f(u)(x)x若y=f(u),u=(v),v=(x)y=f[((x))],则yx=f(u)(v)(x)(2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。1例1函数y4的导数.(13x)14解:y(13x).4(13x)4设yu,u13x,则4y'xy'uu'x(u)'u(13x)'x555124u(3)12u12(13x)5.(13x);.'.1.求下函数的导数.x(1)yco
4、s(2)y2x13452332(1)y=(5x-3)(2)y=(2+3x)(3)y=(2-x)(4)y=(2x+x)112(1)y=(2)y=4(3)y=sin(3x-)(4)y=cos(1+x)23(2x1)3x16232⑴y(2x);⑵ysinx;⑶ycos(x);⑷ylnsin(3x1).41.求下列函数的导数33sin2x2(1)y=sinx+sin3x;(2)y(3)loga(x2)2x122.求ln(2x3x1)的导数;.'.一、选择题(本题共5小题,每题6分,共30分)11.函数y=的导数是()2(3x1)6666A.B.C.-D
5、.-3232(3x1)(3x1)(3x1)(3x1)3.函数y=sin(3x+)的导数为()4A.3sin(3x+)B.3cos(3x+)4422C.3sin(3x+)D.3cos(3x+)44n4.曲线yx在x=2处的导数是12,则n=()A.1B.2C.3D.45.函数y=cos2x+sinx的导数为()cosxcosxA.-2sin2x+B.2sin2x+2x2xsinxcosxC.-2sin2x+D.2sin2x-2x2x26.过点P(1,2)与曲线y=2x相切的切线方程是()A.4x-y-2=0B.4x+y-2=0C.4x+y=0D.
6、4x-y+2=0二、填空题(本题共5小题,每题6分,共30分)8.曲线y=sin3x在点P(,0)处切线的斜率为___________。39.函数y=xsin(2x-)cos(2x+)的导数是。2210.函数y=cos(2x)的导数为。3'11.f(x)xlnx,f(x0)2,则x0___________。复合函数的导数;.'.31.C2.B3.B4.A5.A6.A7.y=u,u=1+sin3x8.-3sin(2x)1312119.y′=sin4x+2xcos4x10.11.2cossin2xxxcos(2x)3;.
此文档下载收益归作者所有