分式化简求值几大常用技巧复习课程.doc

分式化简求值几大常用技巧复习课程.doc

ID:58620609

大小:322.50 KB

页数:6页

时间:2020-10-17

分式化简求值几大常用技巧复习课程.doc_第1页
分式化简求值几大常用技巧复习课程.doc_第2页
分式化简求值几大常用技巧复习课程.doc_第3页
分式化简求值几大常用技巧复习课程.doc_第4页
分式化简求值几大常用技巧复习课程.doc_第5页
资源描述:

《分式化简求值几大常用技巧复习课程.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、体现市民生活质量状况的指标---恩格尔系数,上海也从1995年的53.4%下降到了2003年的37.2%,虽然与恩格尔系数多在20%以下的发达国家相比仍有差距,但按照联合国粮农组织的划分,表明上海消费已开始进入富裕状态(联合国粮农组织曾依据恩格尔系数,将恩格尔系数在40%-50%定为小康水平的消费,20%-40%定为富裕状态的消费)。10、如果学校开设一家DIY手工艺制品店,你希望_____可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。400-500元1326%标题:手工

2、制作坊2004年3月18日十字绣□编制类□银饰制品类□串珠首饰类□(一)对“漂亮女生”饰品店的分析开了连锁店,最大的好处是让别人记住你。“漂亮女生”一律采用湖蓝底色的装修风格,简洁、时尚、醒目。“品牌效应”是商家梦寐以求的制胜法宝。1、你一个月的零用钱大约是多少?分式化简求值几大常用技巧在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种:1、应用分式的基本性质例1如果,则的值是多少?解:由,将待求分式的分子、分母同时

3、除以,得原式=..2、倒数法例2如果,则的值是多少?解:将待求分式取倒数,得∴原式=.3、平方法例3已知,则的值是多少?解:两边同时平方,得4、设参数法例4已知,求分式的值.解:设,则.∴原式=例2已知求的值.解:设,则∴,∴∴∴原式=5、整体代换法例3已知求的值.解:将已知变形,得即∴原式=例:例5.已知,且满足,求的值。解:因为所以所以所以或由故有所以评注:本题应先对已知条件进行变换和因式分解,并由确定出,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。6、消元代换法例2已知则.解:∵∴∴原式=7、拆项法例2

4、若求的值.解:原式=∴原式=0.8、配方法例3若求的值.解:由得.∴∴原式=.化简求值切入点介绍解题的切入点是解题的重要方向,是解题的有效钥匙。分式求值有哪些切入点呢?下面本文结合例题归纳六个求分式的值的常见切入点,供同学们借鉴:切入点一:“运算符号”点拨:对于两个分母互为相反数的分式相加减,只须把其中一个分式的分母的运算符号提出来,即可化成同分母分式进行相加减。例1:求解:原式======评注:我们在求解异分母分式相加减时,先要仔细观察这两个分式的分母是否互为相反数。若互为相反数,则可以通过改变运算符号来化成同分母分

5、式,从而避免盲目通分带来的繁琐。切入点二:“常用数学运算公式”点拨:在求分式的值时,有些数学运算公式直接应用难以奏效,这时,需要对这些数学公式进行变形应用。例2:若,则的值为______解:依题意知,,由得,对此方程两边同时除以得∴评注:在求分式的值时,要高度重视以下这些经过变形后的公式的应用:①②③④⑤切入点三:“分式的分子或分母”点拨:对于分子或分母含有比较繁杂多项式的分式求值,往往需要对这些多项式进行分解因式变形处理,然后再代题设条件式进行求值。例3:已知,求的值。解:∵∴原式=评注:分解因式的方法是打开分式求值

6、大门的有效钥匙,也是实现分式约分化简的重要工具。像本题先利用十字相乘法对分子分解因式,利用提公因式法对分母分解因式,然后约去相同的因式,再代题设条件式求值,从而化繁为简。切入点四:“原分式中的分子和分母的位置”点拨:对于那些分母比分子含有更繁杂代数式的分式,倘若直接求值,则难以求解。但是,我们可以先从其倒数形式入手,然后再对所求得的值取其倒数,则可以把问题简单化。例4:已知,则的值为______解:依题意知,,由得,,即从而得∴故评注:取倒数思想是处理那些分母比分子含有更繁杂代数式的分式求值问题的重要法宝。像本题利用取

7、倒数思想巧变原分式中的分子和分母的位置,从而化难为易。切入点五:“题设条件式”点拨:当题设条件式难以直接代入求值时,不妨对其进行等价变换,也许可以找到解题钥匙。例5:已知,则的值为______解:由得,则∴评注:等价变换思想是沟通已知条件和未知结论的重要桥梁,是恒等变形的充分体现。像本题通过对题设条件式作等价变换,找到重要解题条件“”和“”,然后作代换处理,从而快速求值。切入点六:“分式中的常数值”点拨:当题设条件式的值和所要求解的分式的常数相同时,应注意考虑是否可以作整体代入变形求解,以便更快找到解题的突破口。例6:

8、设,求的值解:∵∴原式=======评注:整体代入变形是分式求值的重要策略。像本题紧扣“”,多次作整体代入处理,先繁后简,逐项通分,最后顺利得到分式的值。综上可见,找准切入点,灵活变形可以巧妙求解分式的值。所以,当你遇到分式求值题找不到解题方向时,不妨找准切入点,对原分式变一变,也许分式求值思路现。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。