高一数学教案:向量小结与复习(1).pdf

高一数学教案:向量小结与复习(1).pdf

ID:58614595

大小:159.47 KB

页数:7页

时间:2020-10-17

高一数学教案:向量小结与复习(1).pdf_第1页
高一数学教案:向量小结与复习(1).pdf_第2页
高一数学教案:向量小结与复习(1).pdf_第3页
高一数学教案:向量小结与复习(1).pdf_第4页
高一数学教案:向量小结与复习(1).pdf_第5页
资源描述:

《高一数学教案:向量小结与复习(1).pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:向量小结与复习(1)教学目的:1234加强数学应用意识,提高分析问题,解决问题的能力56培养学生的数学应用意识教学重点:突出本章重、难点内容教学难点:通过例题分析突出向量运算与实数运算的区别授课类型:复习课课时安排:1课时教具:多媒体、实物投影仪教学方法:在给出本章的知识网络结构后,列出复习提纲,引导学生补充相关内容,同时加强学生对基本概念、基本运算律、重要定理、公式的熟悉程度教学过程:一、引入前面一段,我们一起学习了向量的知识以及解斜三角形问题,并掌握了一定的分析问题解决问题的方法这一节,我们开始对本章进行小结与复

2、习二本章知识1本章知识网络结构2(1)本章的重点有向量的概念、运算及坐标表示,线段的定比分点,平移、正弦定理、余弦定理及其(2)本章的难点是向量的概念,向量运算法则的理解和运用,已知两边和其中一边的对角解(3)对于本章内容的学习,要注意体会数形结合的数学思想方法的应用3(1)向量的基本要素:大小和方向axiyj(x,y)(2)向量的表示:几何表示法AB,a;坐标表示法(3)向量的长度:即向量的大小,记作|a|a0a0(4)特殊的向量:零向量a=0|a|=0为单位向量||=1x1x2(x1,y1)(x2,y2)y1y2(5)

3、第1页共7页b由于向量可以(6)平行向量(共线向量):方向相同或相反的向量,称为平行向量记作a∥进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量4向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质运算类型几何方法坐标方法运算性质向abba量1平行四边形法则ab(ab)ca(bc)的2三角形法则(x1x2,y1y2)加ABBCAC法向aba(b)量ab的三角形法则ABBA(x1x2,y1y2)减法OBOAAB1a是一个向量,满足:(a)()a向量2>0时

4、,a与a同向;()aaa的a(x,y)乘<0时,a与a异向;(ab)ab法=0时,a=0a∥babab是一个数abba向(a)ba(b)(ab)1a0或b0时,量的ab(ab)cacbcab=0数x1x2y1y22222量a

5、a

6、

7、a

8、xy2a0且b0时,积

9、ab

10、

11、a

12、

13、b

14、ab

15、a

16、

17、b

18、cos(a,b)5重要定理、公式:(1)e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数1,2,使a1e12e2(2)第2页共7页a∥ba=λbx1y2x2y10(3)a⊥ba·b=Ox1x2y1

19、y20(4)设点P分有向线段P1P2所成的比为λ,即P1P=λPP211OP=1OP1+1OP2(线段的定比分点的向量公式)x1x2x,1y1y2y.1(线段定比分点的坐标公式)当λ=1x1x2x,21y1y2y.OP=2(OP1+OP2)或2(5)平移公式xxh,P(x,y)a(h,k)P(x,y)yyk.设点按向量平移后得到点,则OP=OP+a或,yf(x)a(h,k)ykf(xh)曲线按向量平移后所得的曲线的函数解析式为:(6)abc2R.正弦定理:sinAsinBsinC222bcacosA222余弦定理:abc2

20、bccosA2bc222cabcosB222bca2accosB2ca222abccosC222cab2abcosC2ab三、讲解范例:例1在四边形ABCD中,AB·BC=BC·CD=CD·DA=DA·AB,试证明四边第3页共7页形ABCD是矩形分析:要证明四边形ABCD是矩形,可以先证四边形ABCD为平行四边形,再证明其一组邻边互相垂直为此我们将从四边形的边的长度和位置两方面的关系来进行思考证明:设AB=a,BC=b,CD=c,DA=d,则∵a+b+c+d=O∴a+b=-(c+d)|a|2+2a·b+|b|2=|c|2+

21、2c·d+|d|2又a·b=c·d∴|a|2+|b|2=|c|2+|d|2(1同理|a|+|d|2=|b|2+|c|2(2由(1)(2)得|a|2=|c|2,|d|2=|b|2∴a=c,d=b即AB=CD,BC=DA∴四边形ABCD是平行四边形于是AB=-CD,即a=-c又a·b=b·c,故a·b=b·(-a∴a·b=O∴AB⊥BC∴四边形ABCD为矩形评述:向量具有二重性,一方面具有“形”的特点,另一方面又具有一套优良的运算性质,因此,对于某些几何命题的抽象的证明,自然可以转化为向量的运算问题来解决,要注意体会例2设坐标

22、平面上有三点A、B、C,i,j分别是坐标平面上x轴,y轴正方向的单位向量,若向量AB=i-2j,BC=i+mj,那么是否存在实数m,使A、B、C三点共线分析:可以假设满足条件的m存在,由A、B、C三点共线AB∥BC存在实数λ,使AB=λBC,从而建立方程来探索解法一:假设满足条件的m存在,由A、B、C三

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。