欢迎来到天天文库
浏览记录
ID:58588513
大小:362.00 KB
页数:34页
时间:2020-10-20
《支持向量机简介ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、支持向量机简介主要内容SVM的理论基础相关基础知识线性支持向量机的求解非线性支持向量机——核方法算法归纳关于SVM思想:通过某种事先选择的非线性映射(核函数)将输入向量映射到一个高维特征空间,在这个空间中寻找最优分类超平面。使得它能够尽可能多的将两类数据点正确的分开,同时使分开的两类数据点距离分类面最远。途径:构造一个约束条件下的优化问题,具体说是一个带线性不等式约束条件的二次规划问题(constrainedquadraticprograming),求解该问题,构造分类超平面,从而得到决策函数。SVM的理论基础传统机器学习方法的经验风险最小化原则统计学习理论
2、的结构化风险最小化原则VC维泛化误差的边界经验风险最小化原则ERM传统的学习理论主要是基于经验风险最小化原则(ERM)的。学习机器的预测输出的期望风险可以表示为:在训练过程中,输入与输出组成训练样本(x,y),提供给学习机器。在测试过程中,训练后的学习机器对于输入x给出预测输出。a为广义参数(所有参数的集合)。预测输出可表示为为损失函数,用来衡量两个变量之间的不一致程度。因此,机器学习问题也可以表示为,从一组独立同分布的观测样本出发,通过最小化风险泛函R(a),确定学习机器的广义参数a的过程。最小化期望风险R(a),必须利用联合概率F(x,y)的信息。在实际中,
3、联合分布未知,只有观测样本。用算术平均值逼近期望风险。由于Remp(a)是用已知的训练样本(经验数据)定义的,因此称为经验风险。用经验风险Remp(a)最小化来代替期望风险R(a)最小化,来求出学习机器的参数a的方法----经验风险最小化原则ERM。多年来,经验风险最小化原则作为解决模式识别等机器学习问题的基本思想,几乎统治了这个领域内的所有研究。理论表明,当训练数据趋于无穷多时,经验风险收敛于实际风险。因此经验风险最小化原则隐含地使用了训练样本无穷多的假设条件。复杂度高的学习机器,往往具有较低的经验风险。因此,经验风险最小化原则的结果,将使学习机器变得越来越复
4、杂。因此,如何根据实际问题,在学习机器的经验风险和模型复杂度之间取得合理的折衷,从而使学习机器具有更高的泛化性能,是非常重要的问题。VC维统计学习理论是关于小样本进行归纳学习的理论,其中一个重要的概念就是VC维(Vapnik-Chervonenkisdimension)。模式识别方法中VC维的直观定义是:对一个指示函数集,如果存在h个样本能够被函数集里的函数按照所有可能的2h种形式分开,则称函数集能够把h个样本打散。函数集的VC维就是它能打散的最大样本数目h。若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大。VC维VC维反映了函数集的学习能力。一
5、般而言,VC维越大则学习机器越复杂,学习容量越大。一般地,对于n维空间Rn中,最多只能有n个点是线性独立的,因此Rn空间超平面的VC维是n+1。Rn空间中的超平面共有n+1个独立的参数,恰好等于VC维数。在非线性情况下学习机器的VC维通常是无法计算的,通过变通的办法巧妙地避开直接求VC维的问题。泛化误差的边界统计学习理论从VC维的概念出发,推导出了关于经验风险和实际风险之间关系的重要结论,称作泛化误差的边界。Remp(a)表示经验风险;Ψ(h/l)称为置信风险;(置信范围,VC信任)l是样本个数;参数h称为一个函数集合的VC维。当h/l较大时,置信风险较大,此时
6、用经验风险近似期望风险就会出现较大的误差。如果样本数较多,使得h/l较小,则置信风险就会较小,经验风险最小化的最优解就会接近真正的最优解。对于一个特定的学习问题,当样本数固定时,如果学习机器的VC维越高(复杂度越高),则置信风险越大,导致真实风险与经验风险之间可能的差就越大,因此设计在设计分类器时,不但要使经验风险尽可能小,而且要控制其VC维也尽可能小,从而缩小置信风险,使期望风险最小。-SRM结构风险最小化原则SRM“结构风险最小化原理”的基本想法:如果我们要求风险最小,就需要使得不等式中两项相互权衡,共同趋于极小;另外,在获得的学习模型经验风险最小的同时,希
7、望学习模型的泛化能力尽可能大,这样就需要h值尽可能小,即置信风险最小。如果固定训练样本数目l的大小,则控制风险R(a)的参量有两个:Remp(a)和h。(1)经验风险Remp(a)依赖于学习机器所选定的函数f(a,x),这样,我们可以通过控制a来控制经验风险。(2)VC维h依赖于学习机器所工作的函数集合。为了获得对h的控制,可以将函数集合结构化,建立h与各函数子结构之间的关系,通过控制对函数结构的选择来达到控制VC维h的目的。支持向量机通过最大化分类边界以最小化VC维,也即在保证经验风险最小的基础上最小化置信风险,从而达到最小化结构风险的目的,因此支持向量机方法
8、实际上就是结构风险最小化
此文档下载收益归作者所有