欢迎来到天天文库
浏览记录
ID:58527932
大小:901.00 KB
页数:16页
时间:2020-05-18
《热力学统计物理_答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.2证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。解:以为自变量,物质的物态方程为其全微分为 (1)全式除以,有根据体胀系数和等温压缩系数的定义,可将上式改写为(2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有(3)若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或 (5)式(5)就是由所给求得的物态方程。确定常量C需要进一步的实验数据。1.10声波在气体中的传播速度为假设气体是理想气体
2、,其定压和定容热容量是常量,试证明气体单位质量的内能和焓可由声速及给出:其中为常量。解:根据式(1.8.9),声速的平方为 (1)其中v是单位质量的气体体积。理想气体的物态方程可表为式中是气体的质量,是气体的摩尔质量。对于单位质量的气体,有(2)代入式(1)得 (3)以表示理想气体的比内能和比焓(单位质量的内能和焓)。由式(1.7.10)—(1.7.12)知 (4)将式(3)代入,即有 (5)式(5)表明,如果气体可以看作理想气体,测定气体中的声速和即可确定气体的比内能和比焓。1.16理想气体分别经等压过程和等容过程,温度由升至。
3、假设是常数,试证明前者的熵增加值为后者的倍。解:根据式(1.15.8),理想气体的熵函数可表达为 (1)在等压过程中温度由升到时,熵增加值为 (2)根据式(1.15.8),理想气体的熵函数也可表达为 (3)在等容过程中温度由升到时,熵增加值为 (4)所以 (5)1.21物体的初温,高于热源的温度,有一热机在此物体与热源之间工作,直到将物体的温度降低到为止,若热机从物体吸取的热量为Q,试根据熵增加原理证明,此热机所能输出的最大功为其中是物体的熵减少量。解:以和分别表示物体、热机和热源在过程前后的熵变。由熵的相加性知,整个系统的
4、熵变为由于整个系统与外界是绝热的,熵增加原理要求 (1)以分别表示物体在开始和终结状态的熵,则物体的熵变为 (2)热机经历的是循环过程,经循环过程后热机回到初始状态,熵变为零,即 (3)以表示热机从物体吸取的热量,表示热机在热源放出的热量,表示热机对外所做的功。根据热力学第一定律,有所以热源的熵变为 (4)将式(2)—(4)代入式(1),即有 (5)上式取等号时,热机输出的功最大,故 (6)式(6)相应于所经历的过程是可逆过程。2.2 设一物质的物态方程具有以下形式:试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式
5、:(1)故有(2)但根据式(2.2.7),有 (3)所以 (4)这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T的函数.2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数和描述.熵函数的全微分为在可逆绝热过程中,故有(1)最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓的全微分为在节流过程中,故有(2)最后一步用了式(2.2.10)和式(1.6.6).将式(1)和式(2)相减,得 (3)所以
6、在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落.这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用.但是用节流过程降温,气体的初温必须低于反转温度.卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.9 证明范氏气体的定容热容量只是温度T的函数,与比体积无关.解:根据习题2.8式(2)(1)范氏方程(式(1.3.12))可以表为(2)由于在V不变时范氏方程的p
7、是T的线性函数,所以范氏气体的定容热容量只是T的函数,与比体积无关.不仅如此,根据2.8题式(3)(3)我们知道,时范氏气体趋于理想气体.令上式的,式中的就是理想气体的热容量.由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积与温度不呈线性关系.根据2.8题式(5)(2)这意味着范氏气体的定压热容量是的函数.(3)将代入,得根据式(1.14.4),在等温过程中水从外界吸收的热量Q为3.1 证明下列平衡判据(假设S>0);(a)在不变的情形下,稳定平衡态的最小.(b)在不变的情形下,稳定平衡态的最小.(
8、c)在不变的情形下,稳定平衡态的最小.(d)在不变的情形下,稳定平衡态的最小.(e)在不变的情形下,稳定平衡态的最小.(f)在不变的情形下,稳定平衡态的最小.(g)在不变的情形下,稳定平衡态的最小.解:为了
此文档下载收益归作者所有