欢迎来到天天文库
浏览记录
ID:58462457
大小:378.50 KB
页数:57页
时间:2020-09-07
《计算机算法设计与分析 第3章课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3章动态规划1学习要点:理解动态规划算法的概念。掌握动态规划算法的基本要素(1)最优子结构性质(2)重叠子问题性质掌握设计动态规划算法的步骤。(1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。2通过应用范例学习动态规划算法设计策略。(1)矩阵连乘问题;(2)最长公共子序列;(3)最大子段和(4)凸多边形最优三角剖分;(5)多边形游戏;(6)图像压缩;(7)电路布线;(8)流水作业调度;(9)背包问题;(10)最优二叉搜索树。3动态规划算法与分治法类似
2、,其基本思想也是将待求解问题分解成若干个子问题算法总体思想nT(n/2)T(n/2)T(n/2)T(n/2)T(n)=4但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。算法总体思想nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)5如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就
3、可以避免大量重复计算,从而得到多项式时间算法。算法总体思想n=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2n/2T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n)6动态规划基本步骤找出最优解的性质,并刻划其结构特征。递归地定义最优值。以自底向上的方式计算出最优值。根据计算最优值时得到的信息,构造最优解。7(1)单个矩阵是完全加括号的;(2)矩阵连乘积是完全加括号的,则可表示为2个完全加括号的矩阵连乘积和的乘积并加括号,即16000,10500,36000,87500,34500完全加括
4、号的矩阵连乘积可递归地定义为:设有四个矩阵,它们的维数分别是:总共有五中完全加括号的方式完全加括号的矩阵连乘积8矩阵连乘问题给定n个矩阵,其中与是可乘的,。考察这n个矩阵的连乘积由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积9矩阵连乘问题给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此
5、次序计算矩阵连乘积需要的数乘次数最少。穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。算法复杂度分析:对于n个矩阵的连乘积,设其不同的计算次序为P(n)。由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:10矩阵连乘问题穷举法动态规划将矩阵连乘积简记为A[i:j],这里i≤j考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,i≤k6、k]的计算量加上A[k+1:j]的计算量,再加上A[i:k]和A[k+1:j]相乘的计算量11特征:计算A[i:j]的最优次序所包含的计算矩阵子链A[i:k]和A[k+1:j]的次序也是最优的。矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。分析最优解的结构12建立递归关系设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]当i=j时,A[i:j]=Ai,因此,m[i,i]=0,i=1,2,…,n当i7、以递归地定义m[i,j]为:这里的维数为的位置只有种可能13计算最优值对于1≤i≤j≤n不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有由此可见,在递归计算时,许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法14用动态规划法求最优解voidMatrixChain(int*p,intn,int**m,i8、nt**s){for(inti=1;i<=n;i++)m[i][i]=0;for(intr=2;r<=n;r++)for(
6、k]的计算量加上A[k+1:j]的计算量,再加上A[i:k]和A[k+1:j]相乘的计算量11特征:计算A[i:j]的最优次序所包含的计算矩阵子链A[i:k]和A[k+1:j]的次序也是最优的。矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。分析最优解的结构12建立递归关系设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]当i=j时,A[i:j]=Ai,因此,m[i,i]=0,i=1,2,…,n当i7、以递归地定义m[i,j]为:这里的维数为的位置只有种可能13计算最优值对于1≤i≤j≤n不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有由此可见,在递归计算时,许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法14用动态规划法求最优解voidMatrixChain(int*p,intn,int**m,i8、nt**s){for(inti=1;i<=n;i++)m[i][i]=0;for(intr=2;r<=n;r++)for(
7、以递归地定义m[i,j]为:这里的维数为的位置只有种可能13计算最优值对于1≤i≤j≤n不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有由此可见,在递归计算时,许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法14用动态规划法求最优解voidMatrixChain(int*p,intn,int**m,i
8、nt**s){for(inti=1;i<=n;i++)m[i][i]=0;for(intr=2;r<=n;r++)for(
此文档下载收益归作者所有