欢迎来到天天文库
浏览记录
ID:5844230
大小:229.00 KB
页数:6页
时间:2017-12-25
《复变函数课后复习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.在映射下,下列z平面上的图形映射为w平面上的什么图形,设或.(1);(2);(3)x=a,y=b.(a,b为实数)解:设所以(1)记,则映射成w平面内虚轴上从O到4i的一段,即(2)记,则映成了w平面上扇形域,即(3)记,则将直线x=a映成了即是以原点为焦点,张口向左的抛物线将y=b映成了即是以原点为焦点,张口向右抛物线如图所示.7.证明区域D内满足下列条件之一的解析函数必为常数.(1);证明:因为,所以,.所以u,v为常数,于是f(z)为常数.(2)解析.证明:设在D内解析,则而f(z)为解析函数,所以所以即从而v为常数,u为常数,即f(z)为常数.(3)Ref(z)=常数.
2、证明:因为Ref(z)为常数,即u=C1,因为f(z)解析,C-R条件成立。故即u=C2从而f(z)为常数.(4)Imf(z)=常数.证明:与(3)类似,由v=C1得因为f(z)解析,由C-R方程得,即u=C2所以f(z)为常数.5.
3、f(z)
4、=常数.证明:因为
5、f(z)
6、=C,对C进行讨论.若C=0,则u=0,v=0,f(z)=0为常数.若C0,则f(z)0,但,即u2+v2=C2则两边对x,y分别求偏导数,有利用C-R条件,由于f(z)在D内解析,有所以所以即u=C1,v=C2,于是f(z)为常数.(6)argf(z)=常数.证明:argf(z)=常数,即,于是得C-R条件→
7、解得,即u,v为常数,于是f(z)为常数.(2)解: 即(3)解: 即(4)解:(1)(2)解(1)因为所以令y=0,上式变为从而(2)用线积分法,取(x0,y0)为(1,0),有由,得C=017.求下列微分方程的解(1)(2)解:(1)设方程两边取拉氏变换,得为Y(s)的三个一级极点,则(2)方程两边同时取拉氏变换,得
此文档下载收益归作者所有