欢迎来到天天文库
浏览记录
ID:5842500
大小:57.50 KB
页数:2页
时间:2017-12-25
《第六讲 七座桥问题》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、龙文学校助你考入理想中学!第六讲七座桥问题 二百五十年前,有一个问题曾出现在普通人的生活中,向人们的智力挑战,使得很多人冥思苦想.在相当长的一段时间里,很多人都想解决它,但他们都失败了. 今天,我们小学生也要大胆地研究研究它. 这个问题叫做“七座桥问题”. 当时,德国有个城市叫哥尼斯堡.城中有条河,河中有个岛,河上架有七座桥,这些桥把陆地和小岛连接起来,这样就给人们提供了一个游玩的好去处(见下图).俗话说,“人是万物之灵”,他们就是在游玩时候想出了这样一个问题: 如果在陆地上可以随便走,而对每座桥只许通过一次,那么一个人要连续地走完这七座桥怎么个走法? 好动脑筋的小朋友请
2、先不要接着往下读,你也试一试,走一走. 你是怎样试的呢?你不可能真到哥尼斯堡城去,像当年的游人那样亲自步行过桥上岛.因为你并没有离开自己的教室,你坐在教室里,在你的面前没有河流,没有小岛,也没有桥,但在你面前却有一张图! 可是,这又是一张什么样的图呢?图上并没河流、小岛和小桥的原样,只是用一些线条来代表它们,但却明白无误地显示出了它们之间的位置关系和连接方式.可以说,这是一张为了做数学而舍弃了许多无关的真实内容而抽象出来的“数学图”. 这样的抽象过程非常重要,这种抽象思维对于学习数学来讲非常重要. 也许你是用铅笔尖在图上画来画去进行试验的吧!好!你做得很好!为什么这样说呢?因
3、为当你这样做的时候,就发挥了自己的想像力:你在无意中把自己想像成了一个小笔尖.你把小笔尖在七桥图上画来画去,想像成了你自身的经历,有位教育家曾说“强烈而活跃的想像是伟大智慧不可缺少的属性”.看来你并不缺少这种想像力! 让我们再好好地想一想,刚才你把小笔尖在七桥图上画来画去,想像成你自己过桥的亲身经历,这不就是把过桥问题和一笔画问题联系在一起了吗?用一句数学上常用的话说,这就是把实际生活中的问题转化成了数学问题,下面的图把这种转化过程详细地画了出来. 在下页左图中把陆地想像成了几大块.这对过桥问题并不产生影响.龙文学校助你考入理想中学! 在下页右图中进一步把陆地块缩小,同时改用线
4、段代表小桥,这也不改变过桥问题的实质. 在下面左图中,进一步把陆地和岛都用小圆圈代表,这已是“几何图形”了,但还是显得复杂. 在下面右图中,圆进一步缩成了点.这样它变成了只由点和线构成的最简单的几何图形了.经过上面这样的一番简化,七桥问题的确就变成了上右图(即为第五讲习题1中的图(9))是不是能一笔画成的问题了.很容易看出图中共有4个奇点,由上一讲得到的判定法则可知,它不能一笔画成,因而人们根本不能一次连续不断地走过七座桥. 这样七桥问题就得到了圆满的解决. 这种解法是大数学家欧拉找到的.这种简化也就是一种抽象过程.所谓“抽象”就是在解决实际问题的过程中,舍弃与问题无关的方方
5、面面.而只抓住那个能体现问题实质的东西.就像在七桥问题中,陆地和岛的大小、桥的宽窄和长短都是与问题无关的东西. 最后,再把解决七桥问题的要点总结一下: ①把陆地和岛缩小画成点,把桥画成线,这样就把原图变成了简单的几何图形了. ②如果这种由点和线组成的图形是一笔画,人就能一次通过所有的桥;如果这种图形不能一笔画成,人就不能一次通过所有的桥. ③由前述判定法则可知,有0个奇点或2个奇点的图形是一笔画,超过两个奇点时,图形就不能一笔画出来. 模仿这种思路,也能解决类似好多问题.
此文档下载收益归作者所有