欢迎来到天天文库
浏览记录
ID:5835273
大小:1.14 MB
页数:30页
时间:2017-12-25
《动量及动量守恒定律习题大全(含解析答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、动量守恒定律习题课一、运用动量守恒定律的解题步骤1.明确研究对象,一般是两个或两个以上物体组成的系统;2.分析系统相互作用时的受力情况,判定系统动量是否守恒;3.选定正方向,确定相互作用前后两状态系统的动量;4.在同一地面参考系中建立动量守恒方程,并求解.二、碰撞1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m1的物体以速度v0与质量为m2的在水平面上静止的物体发生弹性正碰,则有动量守恒:碰撞前后动能不变:所以(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒)[讨论]①当ml=m2时,v1=0,v2=v0(速度互换)②当ml<
2、m2时,v1>0,v2>0(同向运动)④当ml0(反向运动)⑤当ml>>m2时,v1≈v,v2≈2v0(同向运动)、2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m1v1+m2v2=m1v1′+m2v2′机械能的损失:3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒.用公式表示为:m1v1+m2v2=(m1+m2)v动能损失:【例题】甲、乙两球在光滑水平轨道上同向运动,已知
3、它们的动量分别是p甲=5kg·m/s,p乙=7kg·m/s,甲追乙并发生碰撞,碰后乙球的动量变为p乙′=10kg·m/s,则两球质量m甲与m乙的关系可能是A.m甲=m乙B.m乙=2m甲C.m乙=4m甲D.m乙=6m甲三、平均动量守恒问题——人船模型:1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:【模型】如图所示,长为L、质量为M的小船停在静水中,一个质量m的人立在船头,若不计水的粘滞阻
4、力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?30〖分析〗四、“子弹打木块”模型此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹)1.“击穿”类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动【模型1】质量为M、长为l的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速度v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。lv0vS2.“
5、未击穿”类其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,子弹射入木块后二者以相同速度一起运动.【模型2】一质量为M的木块放在光滑的水平面上,一质量m的子弹以初速度v水平飞来打进木块并留在其中,设相互作用力为f问题1 子弹、木块相对静止时的速度v问题2 子弹在木块内运动的时间t问题3 子弹、木块发生的位移s1、s2以及子弹打进木块的深度s问题4 系统损失的机械能、系统增加的内能30动量及动量守恒定律习题大全一.动量守恒定律概述1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于
6、内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。2.动量守恒定律的表达形式(1),即p1p2=p1/p2/,(2)Δp1Δp2=0,Δp1=-Δp2和3.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象。(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。(3)确定过程的始、末状态,写出初动量和末动量表达式。注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。(4)建立动量守恒方程求解。
7、4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.30二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。(1)弹簧是完全弹性的。压缩过程系统动能减少全部转化为弹性势能,
8、Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证实A、B的最终速度分别为:。(这个结论最好背下
此文档下载收益归作者所有