欢迎来到天天文库
浏览记录
ID:58351683
大小:527.00 KB
页数:7页
时间:2020-04-16
《相似三角形经典大题解析(含答案).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相似三角形经典大题1.如图,已知一个三角形纸片,边的长为8,边上的高为,和都为锐角,为一动点(点与点不重合),过点作,交于点,在中,设的长为,上的高为.(1)请你用含的代数式表示.(2)将沿折叠,使落在四边形所在平面,设点落在平面的点为,与四边形重叠部分的面积为,当为何值时,最大,最大值为多少?2.如图,抛物线经过三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;3.如图,已知直线与直
2、线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.ADBEOCFxyy(G)4.如图,矩形中,厘米,厘米().动点同时从点出发,分别沿,运动,速度是厘米/秒.过作直线垂直于,分别交,于.当点到达终点时,点也随之停止运动.设运动时间为秒.(1)若厘米,秒,则______厘米;(2)若厘米,求时间,使,并求出它
3、们的相似比;(3)若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由.DQCPNBMADQCPNBMA5.如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由
4、;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?6.在直角梯形OABC中,CB∥OA,∠COA=90º,CB=3,OA=6,BA=3.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使以O、D、M、N为
5、顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.ABDE(第26题图1)FCOMNxy.7.在图15-1至图15-3中,直线MN与线段AB相交图7-2ADOBC21MN图7-1ADBMN12图7-3ADOBC21MNO于点O,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB,请写出AO与BD的数量关系和位置关系;(2)将图15-1中的MN绕点O顺时针旋转得到图15-2,其中AO = OB.求证:AC = BD,AC ⊥ BD;(3)将图15-2中的OB拉长为AO的k倍得到图15-3,求
6、的值.【答案】解:(1)AO = BD,AO⊥BD;图4ADOBC21MNEF(2)证明:如图4,过点B作BE∥CA交DO于E,∴∠ACO = ∠BEO. 又∵AO = OB,∠AOC =∠BOE,∴△AOC ≌ △BOE.∴AC = BE.又∵∠1 = 45°,∴∠ACO = ∠BEO = 135°.∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD,∠EBD = 90°.∴AC = BD.延长AC交DB的延长线于F,如图4.∵BE∥AC,∴∠AFD = 90°.∴AC⊥BD.(3)如图5,过点B作BE∥C
7、A交DO于E,∴∠BEO= ∠ACO.又∵∠BOE= ∠AOC,AOBC1D2图5MNE∴△BOE ∽ △AOC.∴.又∵OB = kAO,由(2)的方法易得BE = BD.∴.10.如图,已知过A(2,4)分别作x轴、y轴的垂线,垂足分别为M、N,若点P从O点出发,沿OM作匀速运动,1分钟可到达M点,点Q从M点出发,沿MA作匀速运动,1分钟可到达A点。(1)经过多少时间,线段PQ的长度为2?(2)写出线段PQ长度的平方y与时间t之间的函数关系式和t的取值范围;(3)在P、Q运动过程中,是否可能出现PQ⊥MN?若有可能,
8、求出此时间t;若不可能,请说明理由;(4)是否存在时间t,使P、Q、M构成的三角形与△MON相似?若存在,求出此时间t;若不可能,请说明理由;YNAQOPMX
此文档下载收益归作者所有