高中数学必修四教案.pdf

高中数学必修四教案.pdf

ID:58325871

大小:1.50 MB

页数:63页

时间:2020-09-11

高中数学必修四教案.pdf_第1页
高中数学必修四教案.pdf_第2页
高中数学必修四教案.pdf_第3页
高中数学必修四教案.pdf_第4页
高中数学必修四教案.pdf_第5页
资源描述:

《高中数学必修四教案.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯第一章三角函数1.1.1任意角教学目标(一)知识与技能目标理解任意角的概念(包括正角、负角、零角)与区间角的概念.(二)过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三)情感与态度目标1.提高学生的推理能力;2.培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看

2、成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.②角的名称:始边B终边③角的分类:OA顶点正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角④注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角.⑤练习:请说出角α、β、γ各是多少度?2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端

3、点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?yyB145°30°xoxO60OB2B3⑴⑵例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;答:分别为1、2、3、4、1、2象限角.1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={β

4、β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:

5、⑴k∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷角α+k·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4.写出终边在y轴上的角的集合(用0°到360°的角表示).解:{α

6、α=90°+n·180°,n∈Z}.例5.写出终边在yx上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来

7、.4.课堂小结①角的定义;②角的分类:正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角③象限角;④终边相同的角的表示法.5.课后作业:①阅读教材P2-P5;②教材P5练习第1-5题;③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,各是第几象限角?2解:角属于第三象限,k·360°+180°<α<k·360°+270°(k∈Z)因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)故2α是第一、二象限或终边在y轴的非负半轴上的角.又k·180

8、°+90°<<k·180°+135°(k∈Z).2当k为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z),2此时,属于第二象限角2当k为奇数时,令k=2n+1(n∈Z),则n·360°+270°<<n·360°+315°(n∈Z),2此时,属于第四象限角2因此属于第二或第四象限角.22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1.1.2弧度制教学目标(四)知识与技能目标理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五)过程与能力目标能正确地进行弧度与角度之间

9、的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题(六)情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点“角度制”与“弧度制”的区别与联系.教学过程一、复习角度制:初中所学的角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。