高中数学选修2-3知识点、考点、附典型例题.pdf

高中数学选修2-3知识点、考点、附典型例题.pdf

ID:58325835

大小:129.50 KB

页数:5页

时间:2020-09-11

高中数学选修2-3知识点、考点、附典型例题.pdf_第1页
高中数学选修2-3知识点、考点、附典型例题.pdf_第2页
高中数学选修2-3知识点、考点、附典型例题.pdf_第3页
高中数学选修2-3知识点、考点、附典型例题.pdf_第4页
高中数学选修2-3知识点、考点、附典型例题.pdf_第5页
资源描述:

《高中数学选修2-3知识点、考点、附典型例题.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯高中数学选修2-3知识点第一章计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,⋯⋯,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+⋯⋯+MN种不同的方法。2、分步乘法计数原理:做一件事,完成它需要分成N个步骤,做第一步有m1种不同的方法,做第二步有M2不同的方法,⋯⋯,做第N步有MN不同的方法.那么完成这件事共有N=M1M2...MN种不同的方法。3、排列:从n个不同的元素中

2、任取m(m≤n)个元素,按照一定顺序......排成一列,叫做从n个不同元素中取出m个元素的一个排列4、排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一m个排列.从n个不同元素中取出m个元素的一个排列数,用符号An表示。mn!An(n1)(nm1)(mn,n,mN)(nm)!mmmm1mm15、公式:AAACAmAn1nmnnn,mm1AnnAn16、组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。mmmmAAnnn(nn(n1)1)(n(nmm1)1)mmn!n!7、公式:CCn

3、nmmCCnnAmAmm!m!m!m(n!(nm)!m)!mnmCnCn;m1mmCnCnCn1n0n1n12n22rnrrnn8、二项式定理:(ab)CnaCnabCnab⋯Cnab⋯Cnbrnrr展开9、式二项式通项公式的通项公式:Tr1Cnab(r0,1⋯⋯n)考点:1、排列组合的运用2、二项式定理的应用★★1.我省高中学校自实施素质教育以来,学生社团得到迅猛发展。某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团。若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同

4、的参加方法的种数为()A.72B.108C.180D.2161⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯124★★2.在(x)的展开式中,x的幂的指数是整数的项共有()3xA.3项B.4项C.5项D.6项★★3.现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是A.420B.560C.840D.20160★★4.把编号为1,2,3,4的四封电子邮件分别发送到编号为1,2,3,4的四个网址,则至多有一封邮件的编号与网址的编号相同的概率为182★

5、★5.(x)的展开式中x的系数为()xA.-56B.56C.-336D.336第二章随机变量及其分布知识点:1、随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xnX取每一个值xi(i=1,2,.....

6、.)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X的概率分布,简称分布列4、分布列性质①pi≥0,i=1,2,⋯;②p1+p2+⋯+pn=1.5、二项分布:如果随机变量X的分布列为:其中0

7、的条件下事件B发生的概率,叫做条件概率.记作P(B

8、A),读作A发生的条件下B的概率8、公式:2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P(AB)P(B

9、A),P(A)0.P(A)9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。P(AB)P(A)P(B)10、n次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布:设在n次独立重复试验中某个事件A发生的次数,A发生次

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。