欢迎来到天天文库
浏览记录
ID:58156258
大小:1.55 MB
页数:4页
时间:2020-04-25
《一种快速的空间变换模型计算方法-论文.pdf》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第4l卷第3期计算机科学V01.4lNo.32014年3月ComputerScienceMar2014一种快速的空间变换模型计算方法路晓静黄向生(中国科学院自动化研究所北京100090)摘要提出一种基于Sobel算子特征点检测的快速空间变换模型计算方法。利用Sobel算子对边缘的敏感特性生成Sobel描述器,进行特征点的描述和匹配,并运用PROSAC算法快速消除误匹配,从而计算出空间变换模型。实验结果表明,算法采用简单的Sobel算子组合成描述器,快速提取出了图像中的特征点,并且根据相似性描述器准确地进行了特征点匹配,提高了空间
2、变换模型的计算速度,为增强现实和图像拼接等视觉领域应用提供了前提¨】,z]。关键词Sobel算子,描述器,特征点,特征点匹配,PROSAC,增强现实,图像拼接中图法分类号TP391.4文献标识码AFastCalculationMethodofSpaceTransformModelLUXiao-jingHUANGXiang-sheng(InstituteofAutomation,ChineseAcademyofSciences,Beijing100090,China)AbstractAnovelfastspatialtransfo
3、rmationmodelcalculationapproach,basedonSobeloperatorfeaturepointdetec—tion,wasproposed.TheSobeldescriptorisconstructedbytakingadvantagesofthesensitivecharacteristicsofSobelo-peratoronedge.Thefeaturesareextractedandmatched.ThenthewrongmatchingpointsareeliminatedbyPR0S
4、ACalgorithm,andthespatialtransformationmodelbetweentwoimagesiscalculated.TheexperimentalresultsdemonstratethatthesimplestructureSobeldescriptorcanextractthefeaturepointswithhighspeedandmatchthefeaturepointsbetweentwoimagesexactly,thusimprovethecalculationspeed。provid
5、eamethodforaugmentedrealityandimagemo—saicetc.KeywordsSobdoperator,pt0r,Featurepoint,Featurepointrmtching,PRfiKA_C,&augmentedreality,Image~saic空间变换模型的计算是计算机图形图像、计算机视觉领领域提供理论和实验前提。域的基础计算环节,主要用于增强现实[3,43和图像拼接等领1图像获取域。空间变换模型表征的是空间中具有重叠场景的图像之间的空间变换关系,包括尺度和旋转变量、水平和垂直方向位移由
6、于摄像头存在一定程度上的失真,为了避免后续的拼以及水平和垂直方向的变形量等信息。接出现明显的变形,需要标定摄像头,从而对图像进行校正预目前普遍求解空间变换模型的方法是将具有一定空间变处理。本文采用张正友标定法。来得到摄像头的内部参数换关系的图像进行特征区域提取与匹配,之后采用数据集优和畸变系数,对每一次视频序列传来的新帧进行校正,之后将化方法对变换模型进行计算。其中,特征区域提取与匹配算图像转换为灰度图。校正前与校正后的示意图如图1所示。法中较常使用的算子有SIFT算子、Harris角点等。但对于增强现实等领域而言,通常需要较快
7、的计算速度以及较高的计算精度。SIFT算子虽然在进行特征点的提取与匹配的过程中精度高,但是计算速度慢[5;Harris角点计算速度快但对于特征点的提取与匹配精度不高l6]。本文在特征点提取与匹配中,使用了一种基于Sobel算子的新方法,利用Sobel算法对边缘的敏感及便于提取等特点,在保证特征点提取与匹配(a)校正前(b)校正后精度的同时,有效地减少了特征区域提取与匹配的时间。在图l图像校正预处理前后对比图数据集优化过程中采用PROSAC算法,优先选取匹配度较高的特征点对进行模型估计,速度优于传统的RAN算法。2特征点提取与匹配
8、本文以静态图像为基础,分为图像获取、特征点提取与匹配、变换模型计算3个方面,着重探讨和解决了空间变换模型特征点提取与匹配这一步骤是空间变换模型计算的重计算的快速性问题,为今后的计算机图形图像、计算机视觉等点。本文在保证特征点提取与匹配质量的前提下,为了提高到稿日
此文档下载收益归作者所有