北京邮电大学 计算机学院 离散数学 3.2-Growth of Functions.ppt

北京邮电大学 计算机学院 离散数学 3.2-Growth of Functions.ppt

ID:58081943

大小:1.17 MB

页数:25页

时间:2020-09-05

北京邮电大学  计算机学院  离散数学 3.2-Growth of Functions.ppt_第1页
北京邮电大学  计算机学院  离散数学 3.2-Growth of Functions.ppt_第2页
北京邮电大学  计算机学院  离散数学 3.2-Growth of Functions.ppt_第3页
北京邮电大学  计算机学院  离散数学 3.2-Growth of Functions.ppt_第4页
北京邮电大学  计算机学院  离散数学 3.2-Growth of Functions.ppt_第5页
资源描述:

《北京邮电大学 计算机学院 离散数学 3.2-Growth of Functions.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、GrowthofFunctions(函数增长)TheGrowthofFunctionsWequantifytheconceptthatggrowsatleastasfastasf.Whatreallymattersincomparingthecomplexityofalgorithms?Weonlycareaboutthebehaviorforlargeproblems.Evenbadalgorithmscanbeusedtosolvesmallproblems.Ignoreimplementationdetailssuchasloopcounterincrement

2、ation,etc.Wecanstraight-lineanyloop.2021/8/152CollegeofComputerScience&Technology,BUPTOrdersofGrowth(§3.2)Forfunctionsovernumbers,weoftenneedtoknowaroughmeasureofhowfastafunctiongrows.Iff(x)isfastergrowingthang(x),thenf(x)alwayseventuallybecomeslargerthang(x)inthelimit(forlargeenoughval

3、uesofx).Usefulinengineeringforshowingthatonedesignscalesbetterorworsethananother.2021/8/153CollegeofComputerScience&Technology,BUPTOrdersofGrowth-MotivationSupposeyouaredesigningawebsitetoprocessuserdata(e.g.,financialrecords).SupposedatabaseprogramAtakesfA(n)=30n+8microsecondstoprocess

4、anynrecords,whileprogramBtakesfB(n)=n2+1microsecondstoprocessthenrecords.Whichprogramdoyouchoose,knowingyou’llwanttosupportmillionsofusers?A2021/8/154CollegeofComputerScience&Technology,BUPTVisualizingOrdersofGrowthOnagraph,as yougotothe right,thefaster- growingfunc- tionalways eventual

5、ly becomesthe largerone...fA(n)=30n+8IncreasingnfB(n)=n2+1Valueoffunction2021/8/155CollegeofComputerScience&Technology,BUPTConceptoforderofgrowthWesayfA(n)=30n+8is(atmost)ordern,orO(n).Itis,atmost,roughlyproportionalton.fB(n)=n2+1isordern2,orO(n2).Itis(atmost)roughlyproportionalton2.A

6、nyfunctionwhoseexact(tightest)orderisO(n2)isfaster-growingthananyO(n)function.LaterwewillintroduceΘforexpressingexactorder.Forlargenumbersofuserrecords,theexactlyordern2functionwillalwaystakemoretime.2021/8/156CollegeofComputerScience&Technology,BUPTTheBig-ONotationDefinition:Letfandgbe

7、functionsfromNorRtoR.Thengasymptoticallydominates(渐进地支配)f,denotedfisO(g)or'fisbig-Oofg,iff$k$c"n[n>k®

8、f(n)

9、£c

10、g(n)

11、]“fisatmostorderg”,or“fisO(g)”,or“f=O(g)”alljustmeanthatfO(g).Note:ChoosekChoosec;itmaydependonyourchoiceofkOnceyouchoosekandc,youmustprovethetruthoftheimplicatio

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。