高中数学优秀讲义微专题74 利用几何关系求解圆锥曲线问题.doc

高中数学优秀讲义微专题74 利用几何关系求解圆锥曲线问题.doc

ID:58081545

大小:1.31 MB

页数:12页

时间:2020-04-10

高中数学优秀讲义微专题74  利用几何关系求解圆锥曲线问题.doc_第1页
高中数学优秀讲义微专题74  利用几何关系求解圆锥曲线问题.doc_第2页
高中数学优秀讲义微专题74  利用几何关系求解圆锥曲线问题.doc_第3页
高中数学优秀讲义微专题74  利用几何关系求解圆锥曲线问题.doc_第4页
高中数学优秀讲义微专题74  利用几何关系求解圆锥曲线问题.doc_第5页
资源描述:

《高中数学优秀讲义微专题74 利用几何关系求解圆锥曲线问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、微专题74利用几何关系求解最值问题一、基础知识:1、利用几何关系求最值的一般思路:(1)抓住图形中的定点与定长,通常与求最值相关(2)遇到线段和差的最值,经常在动点与定点共线的时候取到。因为当动点与定点不共线时,便可围成三角形,从而由三角形性质可知两边之和大于第三边,两边之差小于第三边,无法取得最值。所以只有共线时才有可能达到最值。要注意动点与定点相对位置关系。一般的,寻找线段和的最小值,则动点应在定点连成的线段上;若寻找线段差的最小值,则动点应在定点连成的线段延长线上。(3)若所求线段无法找到最值关系,则可考虑利用几何关系进行线段转移,将其中某些线段用其它线段进行表示,进而找到最值

2、位置(4)处理多个动点问题时,可考虑先只让一个动点运动,其他动点不动,观察此动点运动时最值选取的规律,再根据规律让其他点动起来,寻找最值位置。2、常见的线段转移:(1)利用对称轴转移线段(详见例1)(2)在圆中,可利用与半径相关的直角三角形(例如半弦,圆心到弦的垂线,半径;或是切线,半径,点与圆心的连线)通过勾股定理进行线段转移。(3)在抛物线中,可利用“点到准线的距离等于该点到焦点的距离”的特点进行两个距离的相互转化。(4)在椭圆中,利用两条焦半径的和为常数,可将一条焦半径转移至另一条焦半径(5)在双曲线中,利用两条焦半径的差为常数,也可将一条焦半径转移至另一条焦半径(注意点在双曲

3、线的哪一支上)3、与圆相关的最值问题:(1)已知圆及圆外一定点,设圆的半径为则圆上点到点距离的最小值为,最大值为(即连结并延长,为与圆的交点,为延长线与圆的交点(2)已知圆及圆内一定点,则过点的所有弦中最长的为直径,最短的为与该直径垂直的弦解:,弦长的最大值为直径,而最小值考虑弦长公式为,若最小,则要取最大,在圆中为定值,在弦绕旋转的过程中,,所以时,最小(3)已知圆和圆外的一条直线,则圆上点到直线距离的最小值为,距离的最大值为(过圆心作的垂线,垂足为,与圆交于,其反向延长线交圆于(4)已知圆和圆外的一条直线,则过直线上的点作圆的切线,切线长的最小值为解:,则若最小,则只需最小即可,

4、所以点为过作垂线的垂足时,最小过作圆的切线,则切线长最短4、与圆锥曲线相关的最值关系:(1)椭圆:设椭圆方程为①焦半径:焦半径的最大值为,最小值为②焦点弦:焦点弦长的最小值称为通径,为,此时焦点弦与焦点所在的坐标轴垂直(2)双曲线:设双曲线方程为①焦半径:焦半径的最小值为,无最大值②焦点弦:焦点弦长的最小值称为通径,为,此时焦点弦与焦点所在的坐标轴垂直(3)抛物线:设抛物线方程为①焦半径:由抛物线的焦半径公式可知:焦半径的最小值为原点到焦点的距离,即②焦点弦:当焦点弦与焦点所在坐标轴垂直时,弦长最小,为二、典型例题:例1:已知在平面直角坐标系中,点,为轴上一动点,则的最小值为____

5、_______思路:从所求可联想到三点不共线时,三角形两边之和大于第三边(而三点共线时可能相等),由已知可得:,但从图像上发现无论在何处,,无法取到等号。(即使共线时等号也不成立),为了取到最值。考虑利用对称转移所求线段。作关于轴的对称点,从而有,所以转化为,可知当三点共线时,,即答案:小炼有话说:(1)三点共线取得最值的条件:动点位于两定点之间时,则距离和取到最小值。同理;当动点位于两定点同一侧时,距离差的绝对值取到最大值。(2)处理线段和(差)最值问题时,如果已知线段无法找到最值关系,则可考虑利用“线段转移法”,将某一线段替换成另一长度相等线段,从而构造出取得最值的条件例2:设抛

6、物线上一点到此抛物线准线的距离为,到直线的距离为,则的最小值为()A.B.C.D.思路:通过作图可观察到直接求的最值比较困难,所以考虑转移某个距离,由已知可得为到准线的距离,所以可根据抛物线定义转移为(其中是抛物线的焦点,),所以,观察图像可得:答案:A例3:已知过抛物线的焦点的弦与抛物线交于两点,过分别作轴的垂线,垂足分别为,则的最小值为__________思路:设抛物线的准线为,由抛物线可知,观察图像可知。而由抛物线定义可得:,所以,即要求出的最小值,只需求出的最小值,即抛物线焦点弦的最小值,由抛物线性质可知当轴时,最小,,所以答案:例4:已知点在抛物线的准线上,过点作抛物线的切

7、线,若切点在第一象限,是抛物线的焦点,点在直线上,点在圆上,则的最小值为()A.B.C.D.思路:由图像可知,固定点,则圆上到距离的最小值,所以只需在直线上找到与圆心距离最小的点,即到直线的距离。需要确定抛物线方程和点坐标,由可得准线方程为,所以,抛物线方程为,焦点设,则,切线斜率,从而,即,,所以直线方程:,从而答案:A例5:抛物线上的点到直线距离的最小值是()A.B.C.D.思路一:直接利用点到直线距离公式得到距离关于的函数,设抛物线上的点,则,所以最

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。