机器人运动轨迹规划.ppt

机器人运动轨迹规划.ppt

ID:58071397

大小:453.00 KB

页数:22页

时间:2020-09-05

机器人运动轨迹规划.ppt_第1页
机器人运动轨迹规划.ppt_第2页
机器人运动轨迹规划.ppt_第3页
机器人运动轨迹规划.ppt_第4页
机器人运动轨迹规划.ppt_第5页
资源描述:

《机器人运动轨迹规划.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第5讲机器人运动轨迹规划2.5工业机器人的运动轨迹规划2.5.1路径和轨迹机器人的轨迹指操作臂在运动过程中的位移、速度和加速度。路径是机器人位姿的一定序列,而不考虑机器人位姿参数随时间变化的因素。如图3.18所示,如果有关机器人从A点运动到B点,再到C点,那么这中间位姿序列就构成了一条路径。而轨迹则与何时到达路径中的每个部分有关,强调的是时间。因此,图中不论机器人何时到达B点和C点,其路径是一样的,而轨迹则依赖于速度和加速度,如果机器人抵达B点和C点的时间不同,则相应的轨迹也不同。我们的研究不

2、仅要涉及机器人的运动路径,而且还要关注其速度和加速度。图3.18机器人在路径上的依次运动2.5.2轨迹规划轨迹规划是指根据作业任务要求确定轨迹参数并实时计算和生成运动轨迹。轨迹规划的一般问题有三个:(1)对机器人的任务进行描述,即运动轨迹的描述。(2)根据已经确定的轨迹参数,在计算机上模拟所要求的轨迹。(3)对轨迹进行实际计算,即在运行时间内按一定的速率计算出位置、速度和加速度,从而生成运动轨迹。在规划中,不仅要规定机器人的起始点和终止点,而且要给出中间点(路径点)的位姿及路径点之间的时间

3、分配,即给出两个路径点之间的运动时间。轨迹规划既可在关节空间中进行,即将所有的关节变量表示为时间的函数,用其一阶、二阶导数描述机器人的预期动作,也可在直角坐标空间中进行,即将手部位姿参数表示为时间的函数,而相应的关节位置、速度和加速度由手部信息导出。以二自由度平面关节机器人为例解释轨迹规划的基本原理。如图3.19所示,要求机器人从A点运动到B点。机器人在A点时形位角为α=20°,β=30°;达到B点时的形位角是α=40°,β=80°。两关节运动的最大速率均为10°/s。当机器人的所有关节均以最大

4、速度运动时,下方的连杆将用2s到达,而上方的连杆还需再运动3s,可见路径是不规则的,手部掠过的距离点也是不均匀的。二自由度机器人关节空间的非归一化运动设机器人手臂两个关节的运动用有关公共因子做归一化处理,使手臂运动范围较小的关节运动成比例的减慢,这样,两个关节就能够同步开始和结束运动,即两个关节以不同速度一起连续运动,速率分别为4°/s和10°/s。如图3.20所示为该机器人两关节运动轨迹,与前面的不同,其运动更加均衡,且实现了关节速率归一化。二自由度机器人关节空间的归一化运动如果希望机器人的手部

5、可以沿AB这条直线运动,最简单的方法是将该直线等分为几部分(图3.21中分成5份),然后计算出各个点所需的形位角α和β的值,这一过程称为两点间的插值。可以看出,这时路径是一条直线,而形位角变化并不均匀。很显然,如果路径点过少,将不能保证机器人在每一小段内的严格直线轨迹,因此,为获得良好的沿循精度,应对路径进行更加细致的分割。由于对机器人轨迹的所有运动段的计算均基于直角坐标系,因此该法属直角坐标空间的轨迹规划。二自由度机器人直角坐标空间的运动2.5.3关节空间的轨迹规划1.三次多项式轨迹规划假设

6、机器人的初始位姿是已知的,通过求解逆运动学方程可以求得机器人期望的手部位姿对应的形位角。若考虑其中某一关节的运动开始时刻ti的角度为θi,希望该关节在时刻tf运动到新的角度θf。轨迹规划的一种方法是使用多项式函数以使得初始和末端的边界条件与已知条件相匹配,这些已知条件为θi和θf及机器人在运动开始和结束时的速度,这些速度通常为0或其他已知值。这四个已知信息可用来求解下列三次多项式方程中的四个未知量:(3.67)这里初始和末端条件是:(3.68)对式(3.67)求一阶导数得到:(3.69)将初始和末

7、端条件代入式(3.67)和(3.69)得到:通过联立求解这四个方程,得到方程中的四个未知的数值,便可算出任意时刻的关节位置,控制器则据此驱动关节所需的位置。尽管每一关节是用同样步骤分别进行轨迹规划的,但是所有关节从始至终都是同步驱动。如果机器人初始和末端的速率不为零,则同样可以通过给定数据得到未知的数值。2.抛物线过渡的线性运动轨迹在关节空间进行轨迹规划的另一种方法是让机器人关节以恒定速度在起点和终点位置之间运动,轨迹方程相当于一次多项式,其速度是常数,加速度为零。这表示在运动段的起点和终点的加

8、速度必须为无穷大,才能在边界点瞬间产生所需的速度。为避免这一现象出现,线性运动段在起点和终点处可以用抛物线来进行过渡,从而产生连续位置和速度,如图3.22所示。抛物线过渡的线性段规划方法假设ti=0和tf时刻对应的起点和终点位置为θi和θf,抛物线与直线部分的过渡段在时间tb和tf-tb处是对称的,得到:显然,这时抛物线运动段的加速度是一个常数,并在公共点A和B(称这些点为节点)上产生连续的速度。将边界条件代入抛物线段的方程,得到:整理得从而简化抛物线段的方程为显然,对于直线段

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。