欢迎来到天天文库
浏览记录
ID:58070535
大小:645.50 KB
页数:30页
时间:2020-04-22
《高考物理机械振动和机械波.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、机械振动和机械波知识网络:周期:机械振动简谐运动物理量:振幅、周期、频率运动规律简谐运动图象阻尼振动无阻尼振动受力特点回复力:F=-kx弹簧振子:F=-kx单摆:受迫振动共振在介质中的传播机械波形成和传播特点类型横波纵波描述方法波的图象波的公式:x=vt特性声波,超声波及其应用波的叠加干涉衍射多普勒效应实例单元切块:按照考纲的要求,本章内容可以分成两部分,即:机械振动;机械波。其中重点是简谐运动和波的传播的规律。难点是对振动图象和波动图象的理解及应用。机械振动教学目标:1.掌握简谐运动的动力学特征和描述简谐运动的物理量
2、;掌握两种典型的简谐运动模型——弹簧振子和单摆。掌握单摆的周期公式;了解受迫振动、共振及常见的应用2.理解简谐运动图象的物理意义并会利用简谐运动图象求振动的振幅、周期及任意时刻的位移。3.会利用振动图象确定振动质点任意时刻的速度、加速度、位移及回复力的方向。教学重点:简谐运动的特点和规律教学难点:谐运动的动力学特征、振动图象教学方法:讲练结合,计算机辅助教学教学过程:一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F=-kx(1)简谐运
3、动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。(2)回复力是一种效果力。是振动物体在沿振动方向上所受的合力。(3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是
4、简谐运动。2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。(1)由定义知:F∝x,方向相反。(2)由牛顿第二定律知:F∝a,方向相同。(3)由以上两条可知:a∝x,方向相反。(4)v和x、F、a之间的关系最复杂:当v、a同向(即v、F同向,也就是v、x反向)时v一定增大;当v、a反向(即v、F反向,也就是v、x同向)时,v一定减小。3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的
5、范围,用振幅A来描述;在时间上则用周期T来描述完成一次全振动所须的时间。(1)振幅A是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T是描述振动快慢的物理量。(频率f=1/T也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:(其中m是振动物体的质量,k是回复力系数,即简谐运动的判定式F=-kx中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。二、典型的简谐运动1.弹
6、簧振子(1)周期,与振幅无关,只由振子质量和弹簧的劲度决定。(2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。(3)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。【例1】有一弹簧振子做简谐运动,则()A.加速度最大时,速度最大B.速度最大时,位移最大C.位移最大时,回复力最大D.回复力最大时,加速度最大解析:振子加速度最大时,处在最大位移处,此时振子的速度为零,由F=-kx知道,此时振子所受回复力最大,所以选项A错,C、
7、D对.振子速度最大时,是经过平衡位置时,此时位移为零,所以选项B错.故正确选项为C、D点评:分析振动过程中各物理量如何变化时,一定要以位移为桥梁理清各物理量间的关系:位移增大时,回复力、加速度、势能均增大,速度、动量、动能均减小;位移减小时,回复力、加速度、势能均减小,速度、动量、动能均增大.各矢量均在其值为零时改变方向,如速度、动量均在最大位移处改变方向,位移、回复力、加速度均在平衡位置改变方向.【例2】试证明竖直方向的弹簧振子的振动是简谐运动.解析:如图所示,设振子的平衡位置为O,向下方向为正方向,此时弹簧的形变为
8、,根据胡克定律及平衡条件有①当振子向下偏离平衡位置为时,回复力(即合外力)为②将①代人②得:,可见,重物振动时的受力符合简谐运动的条件.点评:(1)分析一个振动是否为简谐运动,关键是判断它的回复力是否满足其大小与位移成正比,方向总与位移方向相反.证明思路为:确定物体静止时的位置——即为平衡位置,考查振动物体在任一点受到回复力的特点
此文档下载收益归作者所有