例谈法向量在立体几何中的应用

例谈法向量在立体几何中的应用

ID:5799798

大小:317.50 KB

页数:5页

时间:2017-12-25

例谈法向量在立体几何中的应用_第1页
例谈法向量在立体几何中的应用_第2页
例谈法向量在立体几何中的应用_第3页
例谈法向量在立体几何中的应用_第4页
例谈法向量在立体几何中的应用_第5页
资源描述:

《例谈法向量在立体几何中的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、3eud教育网http://www.3edu.net百万教学资源,完全免费,无须注册,天天更新!例谈法向量在立体几何中的应用对立体几何研究的一种重要思路是代数化,即用向量代数的方法来解决立体几何中的逻辑推理问题。相对于传统的求解立体几何的方法——几何法,向量法在求解立体几何问题时有着方便、快捷,不容易陷入思维障碍的优点。其中,法向量在解题时又起着举足轻重的作用。本文精选典型例题,对法向量在立体几何中的应用进行归纳、整理,以揭示解题规律、方法,供读者参考。1利用法向量证线面、面面的平行与垂直已知直线的方向向量为,平面的

2、法向量为。(1)若证明线面平行,即证⊥;(2)若证明线面垂直,即证∥;(3)若证明面面平行,即证∥;(4)若证明面面垂直,即证明⊥。例1如图1,△ABC是一个正三角形,EC⊥平面ABC,zBD∥CE,且CE=CA=2BD,M是EA的中点。E求证:平面DEA⊥平面ECAMD解:如图,建立空间直角坐标系O-xyz,不妨设CByCA=2,则CE=2,BD=1,C(0,0,0),xA图1A(,1,0),B(0,2,0),E(0,0,2),D(0,2,1),,,,设面CEA与面DEA的法向量是、,则有.=0.=0.=0.=0不

3、妨取、,∵,∴平面DEA⊥平面ECA.AA1DCBB1C1D1图2练习1:如图2,正方体棱长为.求证:平面AB1C∥平面;3eud教育网http://www.3edu.net教学资源集散地。可能是最大的免费教育资源网!3eud教育网http://www.3edu.net百万教学资源,完全免费,无须注册,天天更新!点评:注意平面法向量的求法。练习1用向量法证明也许不如用几何法简洁,但它将逻辑证明转化为数值计算,降低了对空间想象能力要求的难度,是研究立体几何的一种有力工具。2利用法向量求角(1)求线面角如图3,已知AB为

4、平面a的一条斜线,为平面a的一个法A向量,过A作平面a的垂线AO,连结OB则ÐABO为斜线AB和平面a所成的角,易知:sinÐABOOB特殊情况:当,则直线AB与平面垂直。图3例2已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成的角。解:如图4,建立空间直角坐标系,EzxD1yAC1B1A1BDC=(0,1,0),=(-1,0,1),=(0,,1)设平面ABC1D1的法向量为=(x,y,1),由可解得=(1,0,1)图4设直线AE与平面ABC1D1所成的角为θ,则

5、,故直线AE与平面ABC1D1所成的角为arcsin。练习2:(06浙江高考)如图5,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点,(Ⅰ)求证:PB⊥DM;(Ⅱ)求CD与平面ADMN所成的角图53eud教育网http://www.3edu.net教学资源集散地。可能是最大的免费教育资源网!3eud教育网http://www.3edu.net百万教学资源,完全免费,无须注册,天天更新!点评:求直线与平面所成角转化为求直线

6、的方向向量与平面的法向量夹角的余角。注意:线面角的范围:[0,],而向量夹角的范围:[0,p]。(2)求二面角图6图7在二面角中,分别是和的法向量,设二面角的大小为。如图6,则cos=cos<>=;如图7,则cos(p-)=cos<>=。例3在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.求二面角N—CM—B的余弦值。解:取AC中点O,连结OS、OB.∵SA=SC,BA=BC,∴AC⊥SO且AC⊥BO.∵平面SAC⊥平面ABC,平面SAC∩平面

7、ABC=AC∴SO⊥面ABC,如图8所示建立空间直角坐标系O-xyz.则O(0,0,0),A(2,0,0),C(-2,0,0),S(0,0,2),M(1,,0)∴,设=(x,y,1)为平面CMN的一个法向量,图8则∴可取=(1,,1),又=(0,0,2)为平面ABC的一个法向量,∴cos(,)==易知二面角N—CM—B的平面角是锐角,∴二面角N-CM-B的余弦值为练习3:(06年陕西高考)如图9,α⊥β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=,

8、求:二面角A1-AB-B1的大小。3eud教育网http://www.3edu.net教学资源集散地。可能是最大的免费教育资源网!3eud教育网http://www.3edu.net百万教学资源,完全免费,无须注册,天天更新!ABA1B1αβl图9点评:用法向量的夹角求二面角时应注意:平面的法向量所取的方向不同,所求出来的角度也不同,因此,最后

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。