概率统计公式大全(复习重点)汇总.pdf

概率统计公式大全(复习重点)汇总.pdf

ID:57614659

大小:1.26 MB

页数:41页

时间:2020-08-29

概率统计公式大全(复习重点)汇总.pdf_第1页
概率统计公式大全(复习重点)汇总.pdf_第2页
概率统计公式大全(复习重点)汇总.pdf_第3页
概率统计公式大全(复习重点)汇总.pdf_第4页
概率统计公式大全(复习重点)汇总.pdf_第5页
资源描述:

《概率统计公式大全(复习重点)汇总.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第一章随机事件和概率Pnm!从m个人中挑出n个人进行排列的可能m(mn)!(1)排数。列组合Cnm!从m个人中挑出n个人进行组合的可能公式mn!(mn)!数。加法原理(两种方法均能完成此事):某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由种(2)加方法来完成。法和乘乘法原理(两个步骤分别不能完成这件事):m×n法原理某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。(3)一重复排列和非重复排列(有序)些常见对立

2、事件(至少有一个)排列顺序问题(4)随如果一个试验在相同条件下可以重复进行,而每次试验机试验的可能结果不止一个,但在进行一次试验之前却不能断和随机言它出现哪个结果,则称这种试验为随机试验。事件试验的可能结果称为随机事件。(5)基在一个试验下,不管事件有多少个,总可以从其中找出本事这样一组事件,它具有如下性质:件、样①每进行一次试验,必须发生且只能发生这一组中的一本空间个事件;和事件②任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用来表示。基本事件的全体,称为试验的样本空间,用表示。一个事件

3、就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。为必然事件,Ø为不可能事件。不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):AB(6)事如果同时有AB,BA,则称事件A与事件B等价,件的关或称A等于B:。系与运A、B中至少有一个发生的事件:,或者。算属于A而不属于B的部分所构成的事件,称为A与B的差,记为,也可表

4、示为或者AB,它表示A发生而B不发生的事件。A、B同时发生:,或者。Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的事件。互斥未必对立。②运算:结合率:A()=()CA∪(B∪C)=(A∪B)∪C分配率:()∪(A∪C)∩(B∪C)(A∪B)∩()∪()AA德摩根率:ii,i1i1ABABABAB设为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:(7)概1°0≤P(

5、A)≤1,2°P(Ω)=1率的公3°对于两两互不相容的事件A,A,…有12理化定PAP(A)ii义常称为可列(完全)可加性。i1i1则称P(A)为事件A的概率。1°,,12n2°P()P()P()1。12nn(8)古设任一事件A,它是由,组成的,则有12m典概型P(A)=()()()=P()P()P()12m12mmA所包含的基本事件数n基本事件总数若随机试验的结果为无限不可数并且每个结果出现的可(9)几能性均匀,同时样本空间

6、中的每一个基本事件可以使用何概型一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,P(A)L(A)。其中L为几何度量(长度、面积、体积)。L()(10)P()(A)(B)()加法公当P()=0时,P()(A)(B)式(11)P()(A)()减法公当时,P()(A)(B)式当Ω时,P(B)=1-P(B)定义设A、B是两个事件,且P(A)>0,则称P(AB)为事P(A)(12)件A发生条件下,事件B发生的条件概率,记为P(B/A)P(AB)。条件概P(A)条件概率是概率的一种,所有概率的性质都适合于条件率概率。例如

7、P(Ω)=1P(B)=1()(13)乘法公式:P(AB)P(A)P(B/A)更一般地,对事件A,A,…,若P(AA…)>0,则有12121乘法公P(AA…A)P(A)P(A

8、A)P(A

9、AA)……P(A

10、AA…12n121312n12A)。式n1①两个事件的独立性设事件A、B满足P(AB)P(A)P(B),则称事件A、B是相互独立的。(14)若事件A、B相互独立,且P(A)0,则有独立性P(AB)P(A)P(B)P(B

11、A)P(B)P(A)P(A)若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立

12、。必然事件和不可能事件Ø与任何事件都相互独立。Ø与任何事件都互斥。②多个事件的独立性设是三个事件,如果满足两两独立的条件,P()(A)P(B);P()(B)P(C);P()(C)P(A)并且同时满足P()(A)P(B)P(C)那么A、B、C相互独立。对于n个事

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。