超全超全地排列组合地二十种解法.doc

超全超全地排列组合地二十种解法.doc

ID:57423483

大小:302.50 KB

页数:9页

时间:2020-08-17

超全超全地排列组合地二十种解法.doc_第1页
超全超全地排列组合地二十种解法.doc_第2页
超全超全地排列组合地二十种解法.doc_第3页
超全超全地排列组合地二十种解法.doc_第4页
超全超全地排列组合地二十种解法.doc_第5页
资源描述:

《超全超全地排列组合地二十种解法.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。  定义的前提条件是m≦n,m与n均为自然数。① 从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。② 从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。③ 用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。  解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=

2、24。    A(6,6)=6x5x4x3x2x1=720。    A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。[计算公式]排列用符号A(n,m)表示,m≦n。计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2)…1例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。组合的定义及其计算公式1  组合的定义有两种。定义的前提条件是m≦n。① 从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素

3、的一个组合。② 从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。③ 用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[(4x3x2x1)/2]/2=6。[计算公式]组合用符号C(n,m)表示,m≦n。公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。例如:C(5,2)=A(5,2)/[

4、2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。其它排列与组合公式其它排列与组合有三种。① 从n个元素中取出m个元素的循环排列数=A(n,m)/m!=n!/m!(n-m)!。② n个元素被分成K类,每类的个数分别是n1,n2,…,nk这n个元素的全排列数为n!/(n1!xn2!x…xnk!)。 ③ k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。符号说明C-代表-Combination--组合数A-代表-Arrangement--排列数(在旧教材为P-permutation--排列)N-

5、代表-元素的总个数M-代表-参与选择的元素个数!-代表-阶乘END基本公式整理只要记住下面公式,就会计算排列组合:(在列式中n为下标,m为上标)排列A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!组合C(n,m)=A(n,m)/A(m,m)=A(n,m)/m!C(n,m)=C(n,n-m)=n!/m!(n,m)!例如A(4,2)=4!/2!=4x3=12C(4,2)=4!/(2!x2!)=(4x3x2)/(2x2)=6·超全的排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先

6、要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。教学目标1.进一步理解和应用分步计数原理和分类计数原理。2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分

7、成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.

8、解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。