资源描述:
《中考总复习图形的相似课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、教学目标(1)理解相似图形的性质.灵活运用相似三角形的判定方法及性质进行计算或证明。(2)利用相似解决一些实际问题.(3)通过探究,掌握数学建模的思想方法、函数思想方法、分类思想方法。教学目标1.下列各组图中的两个图形相似的是()知识回顾ABCDC相似图形的定义2.如图,四边形ABCD与EFGH相似,则∠α=_____,∠β=_____,EH=_______.β85°75°ABCD8cm10cmα120°EFGHx16cm85°80°20cm相似多边形的性质知识回顾3.两个相似三角形的对应中线的比为1:2,则它们的周长比为_____,面积比为______.(1)相
2、似三角形(多边形)周长的比等于相似比.(2)相似三角形(多边形)面积的比等于相似比的平方.(3)相似三角形(多边形)的对应边上的高、对应中线、对应角平分线的比等于相似比.相似三角形(多边形)的性质知识回顾4.如图,E是□ABCD的边BA延长线上一点,连接EC,交AD于F.在不添加辅助线的情况下,图中相似三角形有:_________________________________________________.ABCDEF△EAF∽△EBC;△EAF∽△CDF;△EBC∽△CDF平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相似.相似三
3、角形的判定知识回顾5.如图,P是△ABC中AB边上的一点,要使△ACP和△ABC相似,则需添加一个条件:____________________________________________________________.ABCP∠ACP=∠B;或∠APC=∠ACB;或AP:AC=AC:AB(即AC2=AP·AB)(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(2)如果两个三角形的两组对应边的比相等,并相应的夹角相等,那么这两个三角形相似.(3)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.相似三角形的判定知识回
4、顾6.下列每幅图中的两个图形不是位似图形的是()D如果两个图形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.位似图形上的任意一对对应点到位似中心的距离之比等于相似比.EABCDDFAOBC位似图形的定义和性质知识回顾典例精析3.小明想利用影长测量树高.把长为2.4m的标杆CD直立在地面上,此时量出标杆的影长为1.6m,树的影长为2.8m,求树高AB是多少?你能解决这个问题吗?ABCDEF2.41.62.8典例精析解:太阳光是平行光线,因此∠CED=∠AFB,CDEABF实际问题建立相似三角形模型数学问题利
5、用对应边的比相等求解解题小结∴即解得AB=4.2,因此树高4.2m.又∠CDE=∠ABF=90°,∴△CDE∽△ABF.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k(在原点的同侧)或-k(在原点的异侧).、1.如图,在边长为1的小正方形网格纸中△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB的相似比为2,画出△OA1B1.(所画△OA1B1与△OAB在原点两侧).(2)写出A1、B1的坐标.B1A1典例透析(4,0
6、)(2,-4)任意一对对应点到位似中心的距离之比等于相似比.小结(-1,2)(-2,0)典例透析2.如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.ABCDEF典例精析小明想利用影长测量树高.他在某一时刻测得小树高为1.5m,其影长为1.2m,测量教学楼旁的一棵大树影长,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4m,墙上影长为1m,那么这棵大树多高?D6.4?1ABC解:作DE⊥AB于E,∴△AD
7、E∽△EGF.∴解得AE=8.∴AB=8+1=9m.变式E1.21.5EFG小明想利用影长测量树高.他在某一时刻测得小树高为1.5m,其影长为1.2m,测量教学楼旁的一棵大树影长,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4m,墙上影长为1m,那么这棵大树多高?D6.4?C变式1AB1.21.5EFGH解决过程中要实行数学建模:审题画示意图明确数量关系解决问题在实际生活中,我们面对不能直接测量物体的高度或宽度时,可以把它们转化为数学问题,建立相似三角形模型,再利用对应边的比相等来达到求解的目的.解题小结小结通过这一节课的复习你有哪些收获?我的
8、收获(1)