欢迎来到天天文库
浏览记录
ID:57375065
大小:1.17 MB
页数:14页
时间:2020-08-13
《课堂展示简约PPT模板课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Learningthepartsofobjectsbynon-negativematrixfactorizationContents1Threemethodslearntorepresentaface2Thefeatureofthreedifferentmethods3NMFalgorithmappliedtosemanticanalysis4Dosanddon’tsProfessionalEnglish5OtherusesofNMF1ThreemethodslearntorepresentafaceProfessionalEnglis
2、hNMFPCAVQNon-negativematrixfactorizationPrincipalcomponentsanalysisVectorquantization2ThefeatureofthreedifferentmethodsProfessionalEnglishNMFPCAVQItsimagesarelocalizedfeaturesthatcorrespondbetterwithintuitivenotionsofthepartsoffacesThebasisimagesforPCAare‘eigenfaces’,som
3、eofwhichresembledistortedversionsofwholefacesVQdiscoversabasisconsistingofprototypes,eachofwhichisawholefaceFigure1Figure2Figure3ThreemethodsinamatrixfactorizationframeworkThercolumnsofWarecalledbasisimages.EachcolumnofHiscalledanencodingandisinone-to-onecorrespondencewi
4、thafaceinV.ThedifferencesbetweenPCA,VQandNMFarisefromdifferentconstraintsimposedonthematrixfactorsWandHInVQ,eachcolumnofHisconstrainedtobeaunaryvector,withoneelementequaltounityandtheotherelementsequaltozeroPCAconstrainsthecolumnsofWtobeorthonormalandtherowsofHtobeorthon
5、ormaltoeachotherNMFdoesnotallownegativeentriesinthematrixfactorsWandH3NMFalgorithmappliedtootherdomainsApplyingNMFtoacompletelydifferentproblem,thesemanticanalysisoftextdocuments.VimisthenumberoftimestheithwordinthevocabularyappearsinthemthdocumentIneachsemanticfeature,t
6、healgorithmhasgroupedtogethersemanticallyrelatedwordsFigure4AlthoughNMFissuccessfulinlearningfacialpartsandsemantictopics,thissuccessdoesnotimplythatthemethodcanlearnpartsfromanydatabase,suchasimagesofobjectsviewedfromextremelydifferentviewpoints,orhighlyarticulatedobjec
7、ts4Dosanddon’tsAneuralnetworkthatinfersthehiddenfromthevisiblevariablesrequirestheadditionofinhibitoryfeedbackconnections.NMFlearningisthenimplementedthroughplasticityinthesynapticconnections.5OtherusesofNMFThankyou
此文档下载收益归作者所有