高考圆锥曲线大题专练.doc

高考圆锥曲线大题专练.doc

ID:57343501

大小:2.45 MB

页数:23页

时间:2020-08-12

高考圆锥曲线大题专练.doc_第1页
高考圆锥曲线大题专练.doc_第2页
高考圆锥曲线大题专练.doc_第3页
高考圆锥曲线大题专练.doc_第4页
高考圆锥曲线大题专练.doc_第5页
资源描述:

《高考圆锥曲线大题专练.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考压轴大题突破练1.已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.2.已知椭圆C的中心为坐标原点O,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B,且=2.(1)求椭圆方程;(2)求m的取值范围.3.已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过点M的直线l与抛物线C相交于A,B两点,O为坐标原点.(1)

2、若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;(2)是否存在定点M,使得不论直线l绕点M如何转动,+恒为定值?4.在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点,(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.5.已知圆F1:(x+1)2+y2=16及点F2(1,0),在圆F1任取一点M,连接MF2并延长交圆F1于点N,连接F1N,过F2作F2P∥MF1交NF1于P,如图所示.(1)求点P的轨迹方程;(2)从F2点引一条直线l交轨迹P于A,B两点,变化直

3、线l,试探究+是否为定值.6.已知椭圆C的中心在坐标原点,右焦点为F(,0),A,B是椭圆C的左、右顶点,D是椭圆C上异于A,B的动点,且△ADB面积的最大值为12.(1)求椭圆C的方程;(2)求证:当点P(x0,y0)在椭圆C上运动时,直线l:x0x+y0y=2与圆O:x2+y2=1恒有两个交点,并求直线l被圆O所截得的弦长L的取值范围.7.已知抛物线C:y2=2px(p>0),点A,B在抛物线C上.(1)若直线AB过点(2p,0),且

4、AB

5、=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(2)设直线OA,OB的倾斜角分别为α,β,且α+β=,问直线AB是否会过某

6、一定点?若是,求出这一定点的坐标;若不是,请说明理由.8.已知椭圆+=1(a>b≥1)的离心率e=,右焦点到直线2ax+by-=0的距离为.(1)求椭圆C的方程;(2)已知椭圆C的方程与直线x-y+m=0交于不同的两点M,N,且线段MN的中点不在圆x2+y2=1内,求m的取值范围.9.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的左焦点为F1(-1,0),且点P在椭圆C上.(1)求椭圆C的方程;(2)若过顶点A(-,0)的直线l1交y轴于点Q,交曲线C于点R,过坐标原点O作直线l2,使得l2∥l1,且l2交曲线C于点S,证明:

7、AQ

8、,

9、OS

10、,

11、AR

12、成等比

13、数列.10如图所示,椭圆+=1(a>b>0)的上、下顶点分别为A,B,已知点B在直线l:y=-1上,且椭圆的离心率e=.(1)求椭圆的标准方程;(2)设P是椭圆上异于A,B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ的中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.11.已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(-,0),F2(,0),点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,求证:k1+k2为定值

14、.12.已知双曲线M:-=1(a>0,b>0)的上焦点为F,上顶点为A,B为虚轴的端点,离心率e=,且S△ABF=1-.抛物线N的顶点在坐标原点,焦点为F.(1)求双曲线M和抛物线N的方程;(2)设动直线l与抛物线N相切于点P,与抛物线的准线相交于点Q,则以PQ为直径的圆是否恒过y轴上的一个定点?如果是,试求出该点的坐标,如果不是,请说明理由.13.如图,椭圆E:+=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4

15、相交于点Q.试探究:在坐标平面内是否存在点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.14.已知椭圆C:+=1(a>b>0)的离心率e=,短轴右端点为A,P(1,0)为线段OA的中点.(1)求椭圆C的方程;(2)过点P任作一条直线与椭圆C相交于两点M,N,试问在x轴上是否存在定点Q,使得∠MQP=∠NQP,若存在,求出点Q的坐标;若不存在,说明理由.15.已知椭圆C:+=1(a>)的右焦点F在圆D:(x-2)2+y2=1上,直线l:x=my+3(m≠0)交椭圆于M,N两点.(1)求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。