欢迎来到天天文库
浏览记录
ID:57286608
大小:517.46 KB
页数:18页
时间:2020-08-09
《直线与平面、平面与平面平行的性质.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、直线与平面、平面与平面平行的性质[学习目标] 1.能应用文字语言、符号语言、图形语言准确描述直线与平面平行,两平面平行的性质定理.2.能用两个性质定理,证明一些空间线面平行关系的简单问题.知识点一 直线与平面平行的性质定理文字语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言⇒a∥b图形语言思考 (1)若直线a∥平面α,则直线a平行于平面α内的任意一条直线,对吗?(2)若直线a与平面α不平行,则直线a就与平面α内的任一直线都不平行,对吗?答 (1)不对.若直线a∥平面α,则由线面平行的性质定理可知直线a与平面α内的一组直线平行.(2)不对.若直线
2、a与平面α不平行,则直线a与平面α相交或a⊂α.当a⊂α时,α内有无数条直线与直线a平行.知识点二 平面与平面平行的性质文字语言如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号语言α∥β,α∩γ=a,β∩γ=b⇒a∥b.图形语言思考 (1)两个平面平行,那么两个平面内的所有直线都相互平行吗?(2)两个平面平行,其中一个平面内直线必平行于另一个平面吗?答 (1)不一定.因为两个平面平行,所以这两条直线无公共点,它们平行或异面.(2)平行.因为两个平面平行,则两个平面无公共点,则其中一个平面内的直线必和另一个平面无公共点,所以它们平行.题型一 线面平行性质定理的应用例4
3、 如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.证明 连接MO.∵四边形ABCD是平行四边形,∴O是AC的中点.又∵M是PC的中点,∴AP∥OM.又∵AP⊄平面BDM,OM⊂平面BDM,∴AP∥平面BDM.又∵AP⊂平面APGH,平面APGH∩平面BDM=GH,∴AP∥GH.跟踪训练1 如图,在正方体ABCD-A1B1C1D1中,E是BB1上不同于B、B1的任一点,AB1∩A1E=F,B1C∩C1E=G.求证:AC∥FG.证明 ∵AC∥A1C1,A1C1⊂平面
4、A1EC1,AC⊄平面A1EC1,∴AC∥平面A1EC1.又∵平面A1EC1∩平面AB1C=FG,∴AC∥FG.题型二 面面平行性质定理的应用例2 已知AB、CD是夹在两个平行平面α、β之间的线段,M、N分别为AB、CD的中点,求证:MN∥平面α.证明 ①若AB、CD在同一平面内,则平面ABDC与α、β的交线为BD、AC.∵α∥β,∴AC∥BD.又M、N为AB、CD的中点,∴MN∥BD.又BD⊂平面α,MN⊄平面α,∴MN∥平面α.②若AB、CD异面,如图,过A作AE∥CD交α于E,取AE的中点P,连接MP、PN、BE、ED.∵AE∥CD.∴AE、CD确定平面AEDC.则平面AE
5、DC与α、β的交线分别为ED、AC,∵α∥β,∴ED∥AC.又P、N分别为AE、CD的中点,∴PN∥ED,又ED⊂平面α,PN⊄平面α,∴PN∥平面α.同理可证MP∥BE,∴MP∥平面α,∵AB、CD异面,∴MP、NP相交.∴平面MPN∥平面α.又MN⊂平面MPN,∴MN∥平面α.跟踪训练2 如图,平面α∥平面β∥平面γ,两条直线l,m分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AC=15cm,DE=5cm,AB∶BC=1∶3,求AB,BC,EF的长.解 如图,连接AF,交β于点G,连接BG,GE,AD,CF.因为平面α∥平面β∥平面γ,所以BG∥CF,GE∥AD.
6、所以===.所以=.所以AB=cm,EF=3DE=15cm,BC=AC-AB=cm.题型三 平行关系的综合应用例3 如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.解 能,如图,取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1.∵平面A1C1∥平面AC,平面A1C∩平面A1C1=A1N,平面AC∩平面A1C=MC,∴A1N∥MC.同理,A1M∥NC.∴四边形A1MCN是平行四边形.∵C1N=C1D1=A1B1=A1P,C1N∥A1P,∴四边形A1PC1N是平行
7、四边形,∴A1N∥PC1且A1N=PC1.同理,A1M∥BP,A1M=BP.又∵A1N∩A1M=A1,C1P∩PB=P,∴平面A1MCN∥平面PBC1.故过点A1与截面PBC1平行的截面是▱A1MCN.连接MN,作A1H⊥MN于点H.由题意,易得A1M=A1N=,MN=2.∴MH=NH=,∴A1H=.故=2××2×=2.跟踪训练3 如图,三棱锥A-BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.证明 ∵四边形EFGH是平行四边形,∴EF∥GH.∵EF⊄平面
此文档下载收益归作者所有