人工神经网络基础.ppt

人工神经网络基础.ppt

ID:57241329

大小:408.50 KB

页数:54页

时间:2020-08-05

人工神经网络基础.ppt_第1页
人工神经网络基础.ppt_第2页
人工神经网络基础.ppt_第3页
人工神经网络基础.ppt_第4页
人工神经网络基础.ppt_第5页
资源描述:

《人工神经网络基础.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、人工神经网络人工神经网络概述前向多层网络自组织特征映射网络(SOFM)一人工神经网络发展二生物学基础三人工神经网络结构四神经网络基本学习算法人工神经网络概述一人工神经网络发展最早的研究可以追溯到20世纪40年代。1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型。这一模型一般被简称M-P神经网络模型,至今仍在应用,可以说,人工神经网络的研究时代,就由此开始了。1949年,心理学家Hebb提出神经系统的学习规则,为神经网络的学习算法奠定了基础。现在,这个规则被称为Hebb规则,许多人工神经网络的学习还遵循这一规则。1957年,F

2、.Rosenblatt提出“感知器”(Perceptron)模型,第一次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神经网络研究的第一次高潮。1969年,人工智能学者专著《感知机》的发表,从数学上严格论证了简单的线性感知机不能解决“异或”(XOR)问题。同时也指出如果在感知器中引入隐含神经元,增加神经网络的层次,可以提高神经网络的处理能力,但是却无法给出相应的网络学习算法。于是,从20世纪60年代末期起,人工神经网络的研究进入了低潮。一人工神经网络发展1982年,美国加州工学院物理学家Hopfield提出了离散的神经网络模型,标志着神经网络的研究又进入

3、了一个新高潮。1984年,Hopfield又提出连续神经网络模型,开拓了计算机应用神经网络的新途径。1986年,Rumelhart和Meclelland提出多层网络的误差反传(backpropagation)学习算法,简称BP算法。解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。一人工神经网络发展自20世纪80年代中期以来,世界上许多国家掀起了神经网络的研究热潮,可以说神经网络已成为国际上的一个研究热点。一人工神经网络发展神经网络研究的两大派:主要包括:生物学家、物理学家和心理学家研究目的:给出大

4、脑活动的精细模型和描述。主要包括:工程技术人员主要目的:怎样利用神经网络的基本原理,来构造解决实际问题的算法,使得这些算法具有有趣的和有效的计算能力。人工神经网络属于此类一人工神经网络发展人工神经网络概念:人工神经网络:就是把一个描述生物神经网络运行机理和工作过程的抽象和简化了的数学-物理模型,表达成为一个以其中的人工神经元为节点、以神经元之间的连接关系为路径权值的有向图,再用硬件或软件程序实现该有向图的运行,其稳态运行结果体现生物神经系统的某种特殊能力。一人工神经网络发展人工神经网络是近年来得到迅速发展的一个前沿课题。神经网络由于其大规模并行处理、容错性、自组

5、织和自适应能力和联想功能强等特点,已成为解决很多问题的有力工具。一人工神经网络发展二生物学基础生物神经元突触信息处理信息传递功能与特点1、生物神经元神经元是大脑处理信息的基本单元人脑约由101l-1012个神经元组成,其中,每个神经元约与104-105个神经元通过突触联接,形成极为错纵复杂而且又灵活多变的神经网络神经元以细胞体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞,其形状很像一棵枯树的枝干主要由细胞体、树突、轴突组成树突是树状的神经纤维接收网络,它将电信号传送到细胞体细胞体对这些输入信号进行整合并进行阈值处理轴突是单根长纤维,它把细胞体的输出信

6、号导向其他神经元神经元的排列和突触的强度(由复杂的化学过程决定)确立了神经网络的功能。1、生物神经元生物学研究表明一些神经结构是与生俱来的,而其他部分则是在学习的过程中形成的。在学习的过程中,可能会产生一些新的连接,也可能会使以前的一些连接消失。这个过程在生命早期最为显著。1、生物神经元2、突触的信息处理生物神经元传递信息的过程为多输入、单输出;神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近;当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质;突触有两种类型,兴奋性突触和抑制性

7、突触。前者产生正突触后电位,后者产生负突触后电位。3、信息传递功能与特点具有时空整合能力不可逆性,脉冲只从突触前传到突触后,不逆向传递神经纤维传导的速度,即脉冲沿神经纤维传递的速度,在1—150m/s之间信息传递时延和不应期,一般为0.3~lms可塑性,突触传递信息的强度是可变的,即具有学习功能存在学习、遗忘或疲劳(饱和)效应对应突触传递作用增强、减弱和饱和三人工神经网络结构人工神经网络人工神经元模型常见的神经元激发函数人工神经网络典型结构1943,神经生理学家McCulloch和数学家Pitts基于早期神经元学说,归纳总结了生物神经元的基本特性,建立了具有逻辑

8、演算功能的神经元模型以及

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。