高中数学选修2-3教学课件:排列组合问题的常用策略.ppt

高中数学选修2-3教学课件:排列组合问题的常用策略.ppt

ID:57181862

大小:2.37 MB

页数:30页

时间:2020-08-02

高中数学选修2-3教学课件:排列组合问题的常用策略.ppt_第1页
高中数学选修2-3教学课件:排列组合问题的常用策略.ppt_第2页
高中数学选修2-3教学课件:排列组合问题的常用策略.ppt_第3页
高中数学选修2-3教学课件:排列组合问题的常用策略.ppt_第4页
高中数学选修2-3教学课件:排列组合问题的常用策略.ppt_第5页
资源描述:

《高中数学选修2-3教学课件:排列组合问题的常用策略.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、解排列组合问题的常用策略从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.排列数公式:4.组合数公式:1.排列的定义:排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置先排末位共有___然后排首位共有___

2、最后排其它位置共有___由分步计数原理得=288位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?练习题二.相邻元素捆绑策略例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.甲乙丙丁由分步计数原理可得共有种不同的排法=480解:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.练习题5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?共有=4320种不同的排法.三.不相邻问题插空策略例3.一个晚会的节目

3、有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法由分步计数原理,节目的不同顺序共有种相相独独独元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为()30练习题四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少种不

4、同的排法解:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有种坐法,则共有种方法1思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法4*5*6*7练习题期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:定序问题可以用倍缩法,还可转化为占位插入模型处理五.重排问题求幂策略例5.把6名实习生分配到7个车间实

5、习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有种分法.7把第二名实习生分配到车间也有7种分法,依此类推,由分步计数原理共有种不同的排法一般地n不同的元素没有限制地安排在m个位置上的排列数为种nm某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法()练习题六.排列组合混合问题先选后排策略例6.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有__种方法.再把5个元素(包含一个复合元素)装入4个不同的盒内有_____种方法.根据分步计数原理装

6、球的方法共有_____解决排列组合混合问题,先选后排是最基本的指导思想.练习题一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有________种192七.元素相同问题隔板策略例7.有10个运动员名额,在分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有___________种分法。一班二班三班四班五班六班七班将

7、n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用块隔板,插入n个元素排成一排的个空隙中,所有分法数为m-1n-1练习题10个相同的球装5个盒中,每盒至少一个,有多少装法?八.平均分组问题除法策略例8.6本不同的书平均分成3堆,每堆2本共有多少分法?解:分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有种取法,而这些分法仅是

8、(AB,CD,EF)一种分法,故共有种分法。平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。