欢迎来到天天文库
浏览记录
ID:57171563
大小:86.00 KB
页数:52页
时间:2020-08-02
《磁共振成像的原理及临床应用课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、五、影响T1、T2的物理因素人体组织中水分子之间是在经常不停地运动着,间互相碰撞,每次碰撞都使水分子运动速度及方向有所变化。每个氢核的小磁场每秒钟也要经历无数次的波动。因此其共振频率也在经常不停地变化。五、影响T1、T2的物理因素所以组织内由于水分子的剧烈运动,局部的内磁场是极其复杂的,氢核对这种复杂的波动的内磁场的反应决定了在90°脉冲停止后其能量丧失的速度,以及相位失去一致性的速度。五、影响T1、T2的物理因素(一)温度的影响正常体温情况下,水分子的运动频率极快,远远超出一定场强下质子的Larmor频率。如果将温度减低,水分子的运动频率减慢
2、,接近于共振的Larmor频率,使T1弛豫更有效,T1缩短了。五、影响T1、T2的物理因素(二)大分子的影响水的分子小、运动快,频率也高。大分子如蛋白质运动很慢,在其表面可以吸附很多水分子,组成水化层。五、影响T1、T2的物理因素(二)大分子的影响由于体积及重量的原因,大分子的运动是很缓慢的,远远低于共振频率,而小的水分子的运动又极快,远远超过共振频率,但靠近大分子表面水化层内的水分子其运动速度大大减慢了,当大分子表面水分子的运动频率接近于Larmor频率时,T1弛豫有效,T1缩短。如果不一致时,T1延长。五、影响T1、T2的物理因素(二)大分
3、子的影响纯净的水分子很小,运动太快,不符合共振频率,因此T1长;脑脊液犹如纯净的水,其T1长;但当有梗阻性脑积水时,脑压增高,脑积液透过室管膜渗透到脑室周围的组织间隙,使水肿区质子所处的环境与脑室内的脑脊液不同,脑室旁组织间隙内的水处在水化层,水分子围绕髓鞘内的蛋白分子运动,T1缩短。五、影响T1、T2的物理因素(二)大分子的影响胆固醇是一个中等大小的分子,其共振频率接近于磁共振扫描机场强下质子的共振频率,故其T1短。五、影响T1、T2的物理因素(三)顺磁性物质的影响一个元素其外层电子数决定其原子价与化学特性,外层电子数为双数者,该原子即不是顺
4、磁性的,在外层中任何一层的电子数为奇数时即为顺磁性原子;例如Fe2+,为非顺磁性的,而Fe3+则为顺磁性原子;钆在原子核的外层轨道上有7个不成对的电子,因此顺磁性很强。五、影响T1、T2的物理因素(三)顺磁性物质的影响在正常体温的溶液中,顺磁性的原子或分子与其他原子及分子一起进行任意的运动,由于它们磁性很强,很低的浓度对邻近磁性较弱的原子即有较大的影响。它们对各种不同频率的波动均起强化作用,包括共振的Larmor频率在内。五、影响T1、T2的物理因素(三)顺磁性物质的影响在此频率条件下促使更多的氢核释放能量,使T1缩短,如前面所提到的任何频率的
5、波动均可使氢核的进动频率失去相位一致性。由于顺磁性原子,对邻近原子的磁场引起了波动,从而使更快地失去相位一致性,T2缩短。五、影响T1、T2的物理因素(三)顺磁性物质的影响急性脑出血时,新鲜血液中所含的血红蛋白中的铁是Fe2+,所产生的信号与周围脑组织不易区分;数日后,在正常体温下,血红蛋白还原成正血红蛋白,其中的铁为Fe3+,为顺磁性的,故使T1缩短,在T1加权的磁共振图像上为高信号。第三节MRI成像技术一、空间编码与梯度磁场在磁共振成像中怎样选定层面,又怎样确定一个层面中各个体素内氢质子的密度以及其位置,这就需要在静磁场内沿X-Y-Z-轴三
6、个互相垂直的方向各附加一个梯度磁场来完成,我们称之为Gx,Gy,Gz。一、空间编码与梯度磁场这就像将三角钢琴的88个键盘看成是从长到短排列成梯形的88根琴弦,琴弦的长度与声音波长的关系和磁场强度与质子共振频率的关系相似,于静磁场内叠加这样的梯形磁场或梯度磁场,其强度远远低于静磁场的强度。它启动的时间必须与射频脉冲相配合。(一)层面的选择在磁共振成像中有两种方法进行层面选择;一是二维成像(2-D),又称选择性激励,是最常见的选层方法;一种是三维成像(3-D),又称体积成像,即在给射频脉冲激励时,不施加梯度磁场。因此整个解剖部位受到激励,层面的形成
7、是在图像重建过程中进行的。(一)层面的选择做横断层成像是沿人体长轴(Z-轴)在静磁场内加一梯度磁场,称Z轴梯度(Gz),使磁场强度从足侧向头侧逐渐增强。梯度磁场的场强很弱,每1cm场强改变只为0.0001T。在1.0T的扫描系统中,每cm的改变只是0.01%。(一)层面的选择有了这样的梯度磁场,就可以对人体内的氢质了做空间编码。质于的共振频率与它们在梯度磁场内的位置有关。(一)层面的选择例如将受检部位头,置于1.0T的静磁场的中央,由于靠足侧磁场弱,靠头侧磁场强,如果射频脉冲频率为42.6MHz,那么只有在1.0T处的一个层面内的质子能受激励,
8、邻近层面内的质于不受激励。这样就可将组织内各层面分开。(一)层面的选择根据Larmor公式,质子进动频率与磁场强度成正比(ω0=γB0);在实际应用中
此文档下载收益归作者所有