高中数学《16微积分基本定理》课件 新人教a版选修.ppt

高中数学《16微积分基本定理》课件 新人教a版选修.ppt

ID:57143827

大小:715.00 KB

页数:35页

时间:2020-08-01

高中数学《16微积分基本定理》课件 新人教a版选修.ppt_第1页
高中数学《16微积分基本定理》课件 新人教a版选修.ppt_第2页
高中数学《16微积分基本定理》课件 新人教a版选修.ppt_第3页
高中数学《16微积分基本定理》课件 新人教a版选修.ppt_第4页
高中数学《16微积分基本定理》课件 新人教a版选修.ppt_第5页
资源描述:

《高中数学《16微积分基本定理》课件 新人教a版选修.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.6微积分基本定理【课标要求】1.了解微积分基本定理的内容与含义.2.会利用微积分基本定理求函数的定积分.【核心扫描】1.用微积分基本定理求函数的定积分是本课的重点.2.对微积分基本定理的考查常以选择、填空题的形式出现.自学导引1.微积分基本定理连续f(x)F(b)-F(a)F(b)-F(a)想一想:导数与定积分有怎样的联系?提示导数与定积分都是定积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.定积分和曲边梯形面积的关系设曲边梯形在x轴上方的面积为S上,x轴下方的面积为S下,则(1)当曲边梯形的面积在x轴上方

2、时,如图(1),则图(1)图(2)图(3)-S下S上-S下0想一想:在上面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?提示根据定积分与曲边梯形的面积的关系知:名师点睛1.微积分基本定理的理解(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法.(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便.(3)设f(x)是定义在区间I上的一个函数,如果存在函数F(x),在区间I上的任意一点x处都有F′(x)=f(x),那么F(x)叫做函数f(x)在区间I上的一个原函数.根据定义,求函数f(x)的原

3、函数,就是要求一个函数F(x),使它的导数F′(x)等于f(x).由于[F(x)+c]′=F′(x)=f(x),所以F(x)+c也是f(x)的原函数,其中c为常数.(4)利用微积分基本定理求定积分的关键是找出满足F′(x)=f(x)的函数F(x),通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F(x).2.被积函数为分段函数或绝对值函数时的正确处理方式分段函数和绝对值函数积分时要分段去积和去掉绝对值符号去积.处理这类积分一定要弄清分段临界点,同时对于定积分的性质,必须熟记在心.题型一 求简单函数的定积分【例1】计算下列定积分[思路探索]解答本题可先

4、求被积函数的原函数;然后利用微积分基本定理求解.(1)用微积分基本定理求定积分的步骤:①求f(x)的一个原函数F(x);②计算F(b)-F(a).(2)注意事项:①有时需先化简,再求积分;②f(x)的原函数有无穷多个,如F(x)+c,计算时,一般只写一个最简单的,不再加任意常数c.【变式1】求下列定积分:求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余函数、指数、对数函数与常数的和与差.(2)精确定位积分区间,分清积分下限与积

5、分上限.定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用.【题后反思】(1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式;(2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数;(3)含有字母参数的绝对值问题要注意分类讨论.求f(x)在某个区间上的定积分,关键是求出被积函数f(x)的一个原函数,即要正确运用求导运算与求定积分运算互为逆运算的关系.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。