欢迎来到天天文库
浏览记录
ID:57130838
大小:25.00 KB
页数:7页
时间:2020-08-03
《智取王位教学设计教学文案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、智取王位教学设计精品文档智取王位教学设计中宇小学:程俊华一设计思路:教学游戏有很多种,其中“智取王位”是双人游戏即著名的巴什博弈问题,是培养学生逆推思维训练的游戏。首先设计探究“共9颗棋子,两人轮流拿,每次取1~2颗,取得最后一颗棋子即‘王位’”的必胜策略,让学生对弈过程中,体会到逆推思维的特点:抓住关键作为突破口,使条件条理化,思维图表化、程序化,从而化繁为简,得到清晰、优化的对策结论。二学情分析通过生活中简单的数学内容的接触,学生有了一些逆推思维的训练,但是学生逆推思维能力还不强。“智取王位”这款游戏,学生没有直接接触过,他们很感兴趣,在已经具备了相应的初级逆推思维训练基础上,学生能与他人
2、合作并解决“智取王位”的问题。三教学目标1.通过“智取王位”的操作练习,让学生初步体会逆推思维在解决一些实际问题中的应用。2.通过有趣的数学游戏,让学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,尝试用逆推思维来解决生活中的一些问题。3.让学生在游戏过程中推理能力得到培养,让学生在“动手中启迪心智,玩乐间拓展思维”,让学生感受“学海无涯乐作舟”。四教学过程(一)、直接导入:师:收集于网络,如有侵权请联系管理员删除精品文档最近我发现有的同学正在玩6颗棋子的游戏,还有没玩过的吗?这节课我们就一起来玩玩吧师:这是一个双人游戏(课件出示课题)名字叫《智取王位》从这个名字上你知道了什么?
3、生:师:那我们这节课就看一看谁最有智慧?师:首先我们来说一说游戏规则?生答师:有获胜的秘诀吗?学生答:-------师:今天我们就来探究一下你们的秘诀到底灵不灵?师:我们先从最简单的3颗棋子开始验证。师:谁想和老师来一局?学生举手玩也要遵守规则,我们先一起读一下游戏规则师:为了公平,咱们用石头剪刀布决定,胜者决定拿棋顺序。其他同学认真观察你们的方法灵不灵(尽量让学生赢,即使后拿,也只拿一个,输赢后问学生为什么?)生答:后拿的一定赢.原来只要他那一颗,我拿两颗,他拿2颗,我拿1颗就能获得最后一颗棋子板书1+22+1师:后拿还真能赢,那如果出现更多的棋子呢?(9)师:观察数量上有什么变化?生:--
4、---收集于网络,如有侵权请联系管理员删除精品文档师:规则不变,要想获胜,后拿还能不能赢生:---说的很好,谁想和他PK一下,老师记录学生之间PK时,边拿边说师:谁还想玩?(再找两个人PK,一人记录)师:那么多同学想玩呀!没关系,老师为大家准备了9颗棋子和记录表,三人分工合作,两人PK,一人记录,给大家10分钟,而且玩的时候要想办法获胜。看看这个方法能不能获胜,是否还有其他方法?小组汇报:一共玩了几局,先拿的赢了几局?后拿的赢了几局?师:多叫几组汇报师:你认为获胜的秘诀是什么?如果学生没有举手的,师就问有没有后拿全部获胜的小组展示。真是一个智者呀师:我们来看看他的表格,有什么诀窍?学生有发现就
5、说,没有老师适当引导!生答(1)后拿凑3。刚才谁后拿输了?想不想试试他的方法,看能不能反败为胜?学生代表尝试,我们一起来试一试,生:(全班同学验证。)-----真有那么灵?师:看来后拿凑3法还真是保证胜利的好方法,还有没有其他好方法?生答:----师:(如果没有学生说)可是老师发现后拿没有凑3也赢了,原因在哪里呢?他和后拿凑3法有什么关系吗?生答-----收集于网络,如有侵权请联系管理员删除精品文档先让学生把那一种情况重现在黑板上进行对比让学生发现共同点都最后拥有第6颗棋子,和第9颗,都剩下最后3颗提出倒数第四颗是关键棋,为什么拿到第六颗就决定了胜利呢?从后向前推理,想要拿到第9颗棋子必须拿到
6、倒数第()颗剩下3颗;他拿1颗,你拿2颗;他拿2颗,你拿1颗,你()拿最后保证你赢。师:有同学说老师我先拿也赢了,我们来看看问题出在哪儿了?你怎么就把胜利的果实拱手让人了?生:根据表格重现,发现问题师;同学们真是火眼金睛,一下就发现了失败原因,大家能帮他反败为胜呢?生:师;看来同学们找到的获胜秘诀很灵验呀!可是你们发现这些棋子的数量的特点了吗?多少颗棋子也可以采用你们的秘诀取胜。生师:对比这两种方法,你更喜欢哪种?为什么?生:师:那如果你有选择权,你会选用先拿还是后拿的生;师:哪种方法更容易拿到关键棋生答:用后拿凑3,为什么?都是3的倍数师:如果对手非让你先拿,还有没有机会赢?怎么办?收集于网
7、络,如有侵权请联系管理员删除精品文档生答;有没有,可以让他上台,(就让学生演示让他赢一次,边演示边讲解)师;后拿能拿到关键棋,,有时先拿也可以,只要最后拿到倒数第四颗。师:现在你知道6颗棋子怎样获胜了吗?生:演示说明师:看来同学们找到的秘诀还真灵,老师给你们出个难题,不是3的倍数的棋子该怎样拿胜算更高呢?例如10颗棋子20颗棋子呢?(看时间)学生思考:畅所欲言让它们变成3的倍数师:看来同学们不仅找
此文档下载收益归作者所有