删减版深度学习课件.ppt

删减版深度学习课件.ppt

ID:57105242

大小:2.58 MB

页数:40页

时间:2020-07-31

删减版深度学习课件.ppt_第1页
删减版深度学习课件.ppt_第2页
删减版深度学习课件.ppt_第3页
删减版深度学习课件.ppt_第4页
删减版深度学习课件.ppt_第5页
资源描述:

《删减版深度学习课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、人脑视觉机理1981年的诺贝尔医学奖,颁发给了DavidHubel(出生于加拿大的美国神经生物学家)和TorstenWiesel,以及RogerSperry。前两位的主要贡献,是“发现了视觉系统的信息处理”:可视皮层是分级的:人脑视觉机理这个发现激发了人们对于神经系统的进一步思考。神经-中枢-大脑的工作过程,或许是一个不断迭代、不断抽象的过程。这里的关键词有两个,一个是抽象,一个是迭代。从原始信号,做低级抽象,逐渐向高级抽象迭代。人类的逻辑思维,经常使用高度抽象的概念。人脑视觉机理例如,从原始信号摄入开始

2、(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。人脑视觉机理这个生理学的发现,促成了计算机人工智能,在四十年后的突破性发展。总的来说,人的视觉系统的信息处理是分级的。从低级的V1区提取边缘特征,再到V2区的形状或者目标的部分等,再到更高层,整个目标、目标的行为等。也就是说高层的特征是低层特征的组合,从低层到高层的特征表示越来越抽象,越来越能表现语义或者意图。而抽象层面越高,存在

3、的可能猜测就越少,就越利于分类。关于特征特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的。如果数据被很好的表达成了特征,通常线性模型就能达到满意的精度。那对于特征,我们需要考虑什么呢?1、特征表示的粒度学习算法在一个什么粒度上的特征表示,才有能发挥作用?就一个图片来说,像素级的特征根本没有价值。例如下面的摩托车,从像素级别,根本得不到任何信息,其无法进行摩托车和非摩托车的区分。而如果特征是一个具有结构性的时候,比如是否具有车把手(handle),是否具有车轮(wheel),就很容易把摩托车和非摩托

4、车区分,学习算法才能发挥作用。2、初级(浅层)特征表示为解决这个问题,DavidField发明了一个算法,稀疏编码(SparseCoding)。稀疏编码是一个重复迭代的过程,每次迭代分两步:1)选择一组S[k],然后调整a[k],使得Sum_k(a[k]*S[k])最接近T。2)固定住a[k],在400个碎片中,选择其它更合适的碎片S’[k],替代原先的S[k],使得Sum_k(a[k]*S’[k])最接近T。经过几次迭代后,最佳的S[k]组合,被遴选出来了。令人惊奇的是,被选中的S[k],基本上都是照片

5、上不同物体的边缘线,这些线段形状相似,区别在于方向。DavidField的算法结果,与杀猫者DavidHubel的生理发现,不谋而合!2、初级(浅层)特征表示也就是说,复杂图形,往往由一些基本结构组成。比如下图:一个图可以通过用64种正交的edges(可以理解成正交的基本结构)来线性表示。比如样例的x可以用1-64个edges中的三个按照0.8,0.3,0.5的权重调和而成。而其他基本edge没有贡献,因此均为03、结构性特征表示小块的图形可以由基本edge构成,更结构化,更复杂的,具有概念性的图形如何表

6、示呢?这就需要更高层次的特征表示,比如V2,V4。因此V1看像素级是像素级。V2看V1是像素级,这个是层次递进的,高层表达由底层表达的组合而成。专业点说就是基basis。V1取提出的basis是边缘,然后V2层是V1层这些basis的组合,这时候V2区得到的又是高一层的basis。即上一层的basis组合的结果,上上层又是上一层的组合basis……(HHT有类似之处)3、结构性特征表示直观上说,就是找到makesense的小patch再将其进行combine,就得到了上一层的feature,递归地向上le

7、arningfeature。3、结构性特征表示在不同object上做training时,所得的edgebasis是非常相似的,但objectparts和models就会completelydifferent了(那咱们分辨car或者face是不是容易多了):4、需要有多少个特征?我们知道需要层次的特征构建,由浅入深,但每一层该有多少个特征呢?任何一种方法,特征越多,给出的参考信息就越多,准确性会得到提升。但特征多意味着计算复杂,探索的空间大,可以用来训练的数据在每个特征上就会稀疏,都会带来各种问题,并不一定

8、特征越多越好好了,到了这一步,终于可以聊到Deeplearning了。上面我们聊到为什么会有Deeplearning(让机器自动学习良好的特征,而免去人工选取过程。还有参考人的分层视觉处理系统),我们得到一个结论就是Deeplearning需要多层来获得更抽象的特征表达。那么多少层才合适呢?用什么架构来建模呢?怎么进行非监督训练呢?DeepLearning基本思想假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。