欢迎来到天天文库
浏览记录
ID:57100703
大小:36.50 KB
页数:3页
时间:2020-08-02
《2011高考数学备考:常用公式大全(34).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011高考数学备考:常用公式大全(34)四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。28、分组法求数列的和:如an=2n+3n29、错位相减法求和:如an=(2n-1)2n30、裂项法求和:如an=1/n(n+1)31、倒序相加法求和:如an=32、求数列{an}的最大、最小项的方法:①an+1-an=……如an=-2n2+29n-3②(an>0)如an=③an=f(n)研究函数f(n)的增减性如an=33、在等差数列中,有关Sn的最值问题——常用
2、邻项变号法求解:(1)当>0,d<0时,满足的项数m使得取最大值.(2)当<0,d>0时,满足的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。六、平面向量1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。2.加法与减法的代数运算:(1).(2)若a=(),b=()则ab=().向量加法与减法的几何表示:平行四边形法则、三角形法则。以向量=、=为邻边作平行四边形ABCD,则两条对角线的向量=+,=-,=-且有||-||≤||≤||+||.向量加
3、法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);+0=+(-)=0.3.实数与向量的积:实数与向量的积是一个向量。(1)||=||·||;(2)当>0时,与的方向相同;当<0时,与的方向相反;当=0时,=0.(3)若=(),则·=().两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.
4、4.P分有向线段所成的比:设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。当点P在线段上时,>0;当点P在线段或的延长线上时,<0;分点坐标公式:若=;的坐标分别为(),(),();则(≠-1),中点坐标公式:.5.向量的数量积:(1).向量的夹角:已知两个非零向量与b,作=,=b,则∠AOB=()叫做向量与b的夹角。(2).两个向量的数量积:已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.其中|b|cos称为向量b在方
5、向上的投影.(3).向量的数量积的性质:若=(),b=()则e·=·e=||cos(e为单位向量);⊥b·b=0(,b为非零向量);||=;cos==.(4).向量的数量积的运算律:·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.6.主要思想与方法:本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它
6、往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
此文档下载收益归作者所有