八下数学勾股定理课件.ppt

八下数学勾股定理课件.ppt

ID:57095123

大小:607.50 KB

页数:26页

时间:2020-07-31

八下数学勾股定理课件.ppt_第1页
八下数学勾股定理课件.ppt_第2页
八下数学勾股定理课件.ppt_第3页
八下数学勾股定理课件.ppt_第4页
八下数学勾股定理课件.ppt_第5页
资源描述:

《八下数学勾股定理课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课堂内容第十七章勾股定理八年级下数学(第二周)要点梳理考点讲练课堂小结课后作业要点梳理1.如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方.在直角三角形中才可以运用2.勾股定理的应用条件一、勾股定理3.勾股定理表达式的常见变形:a2=c2-b2,b2=c2-a2,ABCcab二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.2.勾股数3.原命题

2、与逆命题如果两个命题的题设、结论正好相反,那么把其中一个叫做原命题,另一个叫做它的逆命题.ABCcab例1在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15.(1)求AB的长;(2)求BD的长.解:(1)∵在Rt△ABC中,∠ACB=90°,(2)方法一:∵S△ABC=AC•BC=AB•CD,∴20×15=25CD,∴CD=12.∴在Rt△BCD中,考点一勾股定理及其应用考点讲练方法二:设BD=x,则AD=25-x.解得x=9.∴BD=9.方法总结对于本题类似的模型,若已知两直角边求斜边上的

3、高常需结合面积的两种表示法起来考查,若是同本题(2)中两直角三角形共一边的情况,还可利用勾股定理列方程求解.针对训练1.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为(  )A.8B.4C.6D.无法计算A3.一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为___________.2.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长为______.13或5134.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,求△ABC的面积.解:∵a+b

4、=14,∴(a+b)2=196.又∵a2+b2=c2=100,∴2ab=196-(a2+b2)=96,∴ab=24.例2我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?解:如图,设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得BC2+AC2=AB2,

5、即52+x2=(x+1)225+x2=x2+2x+1,2x=24,∴x=12,x+1=13.答:水池的水深12尺,这根芦苇长13尺.DBCA例3如图所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处,问怎样走路线最短?最短路线长为多少?解析:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式:①沿ABB1A1和A1B1C1D1面;②沿ABB1A1和BCC1B1面;③沿AA1D1D和A1B1C1D1面,把三种方式分别展成平面图形如下:解:在Rt△ABC1中,在Rt△ACC1中,在Rt△AB1

6、C1中,∴沿路径走路径最短,最短路径长为5.化折为直:长方体中求两点之间的最短距离,展开方法有多种,一般沿最长棱展开,距离最短.方法总结针对训练5.现有一长5米的梯子架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是______米.4在Rt△ABO中,OA=2米,DC=OB=1.4米,∴AB2=22-1.42=2.04.∵4-2.6=1.4,1.42=1.96,2.04>1.96,答:卡车可以通过,但要小心.解:如图,过半圆直径的中点O,作直径的垂线交下底边于点D,取点C,使CD=

7、1.4米,过C作OD的平行线交半圆直径于B点,交半圆于A点.6.如图,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道?7.在O处的某海防哨所发现在它的北偏东60°方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处.(1)此时快艇航行了多少米(即AB的长)?北东OAB60°45°C解:根据题意得∠AOC=30°,∠COB=45°,AO=1000米.∴AC=500米,BC

8、=OC.在Rt△AOC中,由勾股定理得∴BC=OC=在O处的某海防哨所发现在它的北偏东60°方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处.(2)距离哨所多少米(即OB的长)?北东OAB60°45°C解:在Rt△BOC中,由勾股定理得例4在△ABC中,AB=c,BC=a,AC=b,,2c-b=12,求△ABC的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。