Eviews 参数稳定性检验和虚拟变量的应用课件.ppt

Eviews 参数稳定性检验和虚拟变量的应用课件.ppt

ID:57057371

大小:310.50 KB

页数:28页

时间:2020-07-30

Eviews 参数稳定性检验和虚拟变量的应用课件.ppt_第1页
Eviews 参数稳定性检验和虚拟变量的应用课件.ppt_第2页
Eviews 参数稳定性检验和虚拟变量的应用课件.ppt_第3页
Eviews 参数稳定性检验和虚拟变量的应用课件.ppt_第4页
Eviews 参数稳定性检验和虚拟变量的应用课件.ppt_第5页
资源描述:

《Eviews 参数稳定性检验和虚拟变量的应用课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、参数稳定性检验 和虚拟变量模型在本章余下的四节中,我们将讨论虚拟变量在回归分析中的应用。虚拟变量既可以作为解释变量出现在模型中,也可以作为因变量出现在模型中,我们统称这类含虚拟变量的经济计量模型为虚拟变量模型。1虚拟变量的性质在金融计量学中,所考虑的变量除了可以直接度量的数量变量(如价格、收益、收入等)之外,还有实质上是定性性质的变量,如性别、国家、战争及政府经济政策的变动等。这类定性变量常指某一性质、属性出现或不出现,例如男性或女性,中国人或外国人,战争期间或非战争期间等。由于其不能直接度量,为研究方便,可构造一个变量,令其取值为1

2、或为0,取值为0时表示某一性质出现(不出现),取值为1时表示某性质不出现(出现),该变量即为虚拟变量(dummyvariables)。2一般的,在虚拟变量的设置中,基础类型、否定类型取值为“0”,称为基底(base)类、基准(benchmark)类或参考(reference)类;而比较类型、肯定类型取值“1”。虚拟变量和定量变量在回归模型中的应用是一样的。若一个模型中的解释变量全部都是虚拟变量,则此模型被称为方差分析模型(AnalysisofVarianceModel);若解释变量中既有定量变量,又有虚拟变量,则该线性回归模型可称为协

3、方差分析模型(AnalysisofCovarianceModel)。3例子在我国上市公司中,个人做第一大股东的现象还非常少,主要是国家或法人作为公司的第一大股东。而国家作为第一大股东与法人相比,除了公司业绩,还有其它考虑,例如就业、形象工程、负责人升迁、上缴利税等,这些目标都或多或少有悖于公司利润最大化的目标。另外,国家控股的公司由国家选择代理人,而这些代理人往往是行政人员或官僚出身,没有经营管理的特长,进一步制约上市公司绩效的发挥。因此,总体而言,国家作为第一大股东的上市公司的绩效要低于法人做第一大股东的上市公司的绩效。为验证上述结

4、论,我们建立如下的模型:4其中为每股收益,用以代表公司绩效。的定义方式如下:1,国家是公司i的第一大股东=0,法人是公司i的第一大股东由模型可以得到:国家为第一大股东平均每股收益:︱=法人为第一大股东平均每股收益:︱=0)=5虚拟变量的设置原则许多金融现象表明,金融数据特别是时间序列数据常因某些非正常因素(如战争、自然灾害等)而产生较大的波动,这种波动使得被解释变量与解释变量之间的数量依存关系在某一期或暑期内同其它各期相比具有显著的差异。这种差异表现为描述变量之间关系的回归线(面)在不同时期内或截距项移动,或斜率移动,或截距项和斜率同

5、时移动。6相应的,为表述这种移动,虚拟变量的引入方式也有如下的三种:(1)加法方式:(2)乘法方式:(3)同时以加法方式及乘法方式引入:在同一个模型中,可以引入多个虚拟变量,但其设置必须遵循如下的原则:如果一个定性变量有m个类别,则仅要引入m-1个虚拟变量。7虚拟变量模型的运用1、虚拟变量模型在调整季节波动中的运用许多按月度或季度数据表示的金融时间序列,常呈现出季节变化的规律性,如公司销售额、通货膨胀率、节假日储蓄额等。在研究中,有时需要消除季节性因素的影响,即需要进行季节调整(seasonaladjustment)。进行季节调整有多

6、种方法,而利用虚拟变量进行季节调整是较为简单的一种。原模型:引入虚拟变量:82、虚拟变量模型在分段线性回归中的应用在金融理论中,常常会出现一种情况:当某影响因素越过某一临界值,或时间过了某一临界点之后,因变量对影响因素的变化率将发生变化,在图形中就表现为斜率不同的两段连续折线。对构成折线的数据的回归即为分段线性回归。例如:利用虚拟变量,我们可以建立如下的回归模型:9图4-6有两个转折点的联系折线103、利用虚拟变量模型对平行数据进行混合回归假定要研究某一类型上市公司资本结构与影响因素之间的关系,我们以总负债率(以Y表示)代表资本结构,

7、其影响因素假设只有股权结构(以表示)、公司治理结构(以表示)、成长性(以表示)三个因素;遗憾的是,假设这一类型的上市公司只有两家,而每家也只有从1991-2004年共14年的年度数据。很明显,对每一年利用横截面数据回归是不能的(观测值个数小于待估参数的个数)。11而对每家公司利用时间序列数据回归,尽管可以得到系数估计值,但实际上由于两家公司类型相同,可能受某些相同因素的影响,所以两方程的随机误差项可能是同期相关的,对每个方程分别应用普通最小二乘回归是不合适的。在此情况下,我们可以利用虚拟变量模型对时间序列和横截面数据的混合数据做出回归

8、:12回归模型的结构稳定性检验—邹氏检验一、邹氏检验的过程:邹氏检验所依据的理论前提包括:在可能发生的结构变化前后,随机误差项具有相同的方差;随机误差项满足独立正态分布。在这些假定下,可按如下的步骤进行邹氏检验:1、将数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。