资源描述:
《二次函数yax2 k的图象性质课件(人教版九年级下册).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数的图象和性质(2)二次函数的一般形式:y=ax2+bx+c(其中a、b、c是常数,a≠0)a是二次项系数b是一次项系数C是常数项二次函数的特殊形式:当b=0时,y=ax2+c当c=0时,y=ax2+bx当b=0,c=0时,y=ax2例1:若函数为二次函数,则m的值为。1.抛物线y=ax2的顶点是原点,对称轴是y轴.zxxk2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随
2、着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质复习温故知新y=ax2(a≠0)a>0a<0图象开口方向顶点坐标对称轴增减性极值xyOyxO向上向下(0,0)(0,0)y轴y轴当x<0时,y随着x的增大而减小。当x>0时,y随着x的增大而增大。当x<0时,y随着x的增大而增大。当x>0时,y随着x的增大而减小。x=0时,y最小=0x=0时,y最大=0抛物线y=ax2(a≠
3、0)的形状是由
4、a
5、来确定的,一般说来,
6、a
7、越大,抛物线的开口就越小.做一做(1)抛物线y=2x2的顶点坐标是,对称轴是,在对称轴侧,y随着x的增大而增大;在对称轴侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外).(0,0)y轴右左00上试一试:2、函数y=8x2的图象的开口,对称轴是,顶点是;在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而;试一试:3、函数y=-3x2的图象的开口,对称轴是,顶点是;在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而;二次函
8、数的图像例2.在同一直角坐标系中,画出二次函数y=x2+1和y=x2的图像解:先列表x…-3-2-10123…y=x2+1y=x2…105212510……9410149…然后描点画图,得到y=x2+1,y=x2的图像.x…..-2-1012……y=x2……41014y=x2+1…………y=x2y=x2+152125函数y=x2+1的图象与y=x2的图象的位置有什么关系?函数y=x2+1的图象可由y=x2的图象沿y轴向上平移1个单位长度得到.操作与思考函数y=x2+1的图象与y=x2的图象的形状相同吗?相同二次函数的图像12345x1234
9、5678910yo-1-2-3-4-5(1)抛物线y=x2+1,y=x2的开口方向、对称轴、顶点各是什么?(2)抛物线y=x2+1与抛物线y=x2有什么关系?讨论抛物线y=x2+1:开口向上,顶点为(0,1).对称轴是y轴,抛物线y=x2:开口向上,顶点为(0,0).对称轴是y轴,y=x2+1y=x2二次函数的图像例2.在同一直角坐标系中,画出二次函数y=x2-2和y=x2的图像学科网解:先列表x…-3-2-10123…y=x2-2y=x2…72-1-2-127……9410149…然后描点画图,得到y=x2-2,y=x2的图像.x…..-
10、2-1012……y=x2……41014y=x2-2…………y=x2y=x2-22-1-2-12函数y=x2-2的图象可由y=x2的图象沿y轴向下平移2个单位长度得到.函数y=x2-2的图象与y=x2的图象的位置有什么关系?操作与思考函数y=x2-2的图象与y=x2的图象的形状相同吗?相同二次函数的图像(1)抛物线y=x2-2,y=x2的开口方向、对称轴、顶点各是什么?(2)抛物线y=x2-2与抛物线y=x2有什么关系?讨论抛物线y=x2-2:开口向上,顶点为(0,-2).对称轴是y轴,抛物线y=x2:开口向上,顶点为(0,0).对称轴是y
11、轴,二次函数的图像例3.在同一直角坐标系中,画出二次函数y=-x2和y=-x2+3,y=-x2-2的图像y=-x2-2y=-x2+3y=-x2函数y=-x2-2的图象可由y=-x2的图象沿y轴向下平移2个单位长度得到.函数y=-x2+3的图象可由y=-x2的图象沿y轴向上平移3个单位长度得到.图象向上移还是向下移,移多少个单位长度,有什么规律吗?y=ax2+ka>0a<0图象开口对称性顶点(0,k)增减性二次函数y=ax2+k的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点(最小值为k)顶点是最高点(最大值为k)在对
12、称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减函数y=ax2(a≠0)和函y=ax2+k(a≠0)的图象形状,只是位置不同;当k>0时,函数y=ax2+k的图象可由y=ax2的图