一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf

一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf

ID:57015332

大小:170.00 KB

页数:6页

时间:2020-07-30

一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf_第1页
一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf_第2页
一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf_第3页
一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf_第4页
一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf_第5页
资源描述:

《一个应用实例详解卡尔曼滤波及其算法实现 - OUYANG_LINUX007的专栏 - 博客频道 - CSDN.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(WhiteGaussianNoise),也就是这些偏

2、差跟前后时间是没有关系的而且符合高斯分配(GaussianDistribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。假如我们要估算k时刻的是实际温度值。首先你要根据k1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得

3、到的:如果k1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(2523)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算

4、出的最优温度值偏向温度计的值。现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是

5、卡尔曼增益(KalmanGain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。3.卡尔曼滤波器算法(TheKalmanFilterAlgorithm)在这一部分,我们就来描述源于DrKalman的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(RandomVariable),高斯或正态分配(GaussianDistribution)还有StatespaceModel等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微

6、分方程(LinearStochasticDifferenceequation)来描述:X(k)=AX(k1)+BU(k)+W(k)再加上系统的测量值:Z(k)=HX(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(WhiteGaussianNoise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。对于满足上面的条件(线性随机微分

7、系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances来估算系统的最优化输出(类似上一节那个温度的例子)。首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k

8、k1)=AX(k1

9、k1)+BU(k)………..(1)式(1)中,X(k

10、k1)是利用上一状态预测的结果,X(k1

11、k1)是上一状态最优的结果

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。