纳米材料的制备方法 第二组课件.ppt

纳米材料的制备方法 第二组课件.ppt

ID:56959553

大小:2.89 MB

页数:80页

时间:2020-07-22

纳米材料的制备方法  第二组课件.ppt_第1页
纳米材料的制备方法  第二组课件.ppt_第2页
纳米材料的制备方法  第二组课件.ppt_第3页
纳米材料的制备方法  第二组课件.ppt_第4页
纳米材料的制备方法  第二组课件.ppt_第5页
资源描述:

《纳米材料的制备方法 第二组课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、纳米微粒的制备方法分类:1根据是否发生化学反应,纳米微粒的制备方法通常分为两大类:物理方法和化学方法。2根据制备状态的不同,制备纳米微粒的方法可以分为气相法、液相法和固相法等;3按反应物状态分为干法和湿法。大部分方法具有粒径均匀,粒度可控,操作简单等优点;有的也存在可生产材料范围较窄,反应条件较苛刻,如高温高压、真空等缺点。纳米粒子制备方法物理法化学法粉碎法构筑法沉淀法水热法溶胶-凝胶法冷冻干燥法喷雾法干式粉碎湿式粉碎气体冷凝法溅射法氢电弧等离子体法共沉淀法均相沉淀法水解沉淀法纳米粒子合成方法分类气相反应法液相反应法气相分解法气相合成法气-固反应法其它方法(如球磨法)纳米粒子制备方法气

2、相法液相法沉淀法水热法溶胶-凝胶法冷冻干燥法喷雾法气体冷凝法氢电弧等离子体法溅射法真空沉积法加热蒸发法混合等离子体法共沉淀法化合物沉淀法水解沉淀法纳米粒子合成方法分类固相法粉碎法干式粉碎湿式粉碎化学气相反应法气相分解法气相合成法气-固反应法物理气相法热分解法其它方法固相反应法§气相法制备纳米微粒1定义:气相法指直接利用气体或者通过各种手段将物质变为气体,使之在气体状态下发生物理或化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法。2气相法法主要具有如下特点:①表面清洁;②粒度整齐,粒径分布窄;③粒度容易控制;④颗粒分散性好。3优势:气相法通过控制可以制备出液相法难以制得的金属碳化物、

3、氮化物、硼化物等非氧化物超微粉。4加热源通常有以下几种:1)电阻加热;2)等离子喷射加热;3)高频感应加热;4)电子束加热;5)激光加热;6)电弧加热;7)微波加热。不同的加热方法制备出的超微粒的量、品种、粒径大小及分布等存在一些差别。A电阻加热:(电阻丝)电阻加热法使用的螺旋纤维或者舟状的电阻发热体。如图金属类:如铬镍系,铁铬系,温度可达1300℃;钼,钨,铂,温度可达1800℃;非金属类:SiC(1500℃),石墨棒(3000℃),MoSi2(1700℃)。有两种情况不能使用这种方法进行加热和蒸发:①两种材料(发热体与蒸发原料)在高温熔融后形成合金。②蒸发原料的蒸发温度高于发热体的

4、软化温度。目前使用这一方法主要是进行Ag、Al、Cu、Au等低熔点金属的蒸发。B高频感应:电磁感应现象产生的热来加热。类似于变压器的热损耗。高频感应加热是利用金属材料在高频交变电磁场中会产生涡流的原理,通过感应的涡流对金属工件内部直接加热,因而不存在加热元件的能量转换过程而无转换效率低的问题;加热电源与工件不接触,因而无传导损耗;加热电源的感应线圈自身发热量极低,不会因过热毁损线圈,工作寿命长;加热温度均匀,加热迅速工作效率高。C激光加热:利用大功率激光器的激光束照射子反应物,反应物分子或原子对入射激光光子的强吸收,在瞬间得到加热、活化,在极短的时间内反应分子或原子获得化学反应所需要的

5、温度后,迅速完成反应、成核凝聚、生长等过程,从而制得相应物质的纳米微粒。激光能在10-8秒内对任何金属都能产生高密度蒸气,能产生一种定向的高速蒸气流。D电子束轰击:利用静电加速器或电子直线加速得到高能电子束,以其轰击材料,使其获得能量,(通过与电子的碰撞)而受热气化。在高真空中使用E等离子体喷射:电离产生的等离子体气体对原料进行加热。F微波加热微波是频率在300兆赫到300千兆赫的电磁波(波长1米~1毫米)。通常,介质材料由极性分子和非极性分子组成,在微波电磁场作用下,极性分子从原来的热运动状态转向依照电磁场的方向交变而排列取向。产生类似摩擦热,在这一微观过程中交变电磁场的能量转化为介

6、质内的热能,使介质温度出现宏观上的升高。由此可见微波加热是介质材料自身损耗电磁场能量而发热。对于金属材料,电磁场不能透入内部而是被反射出来,所以金属材料不能吸收微波。水是吸收微波最好的介质,所以凡含水的物质必定吸收微波。特点:加热速度快;均匀加热;节能高效;易于控制;选择性加热。****1定义:气体冷凝法是在低压的氩、氮等惰性气体中加热金属,使其蒸发后形成超微粒(1—1000nm)或纳米微粒的方法。2气体冷凝法的研究进展:1963年,由RyoziUyeda及其合作者研制出,即通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米微粒。20世纪80年代初,Gleiter等首先提出,将气体

7、冷凝法制得具有清洁表面的纳米微粒,在超高真空条件下紧压致密得到多晶体(纳米微晶)。§1.低压气体中蒸发法[气体冷凝法]3气体冷凝法的原理,见图。整个过程是在超高真空室内进行。通过分子涡轮使其达到0.1Pa以上的真空度,然后充人低压(约2KPa)的纯净惰性气体(He或Ar,纯度为~99.9996%)。欲蒸的物质(例如,金属,CaF2,NaCl,FeF等离子化合物、过渡族金属氮化物及易升华的氧化物等)置于坩埚内,通过钨电阻加热器或石墨加热器等加热装

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。