资源描述:
《平行线的性质(第1课时).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、acb5.3.1平行线的性质探究:两直线平行,同位角有什么关系?ab探究c15234768如图,直线a∥b,(1)测量同位角∠1和∠5的大小,它们有什么关系?65°65°cab15243687∠1=∠5a∥b请你动动手1b567ac24381∠1=∠5a∥b请你动动手方法二:裁剪叠合法简单地说:两直线平行,同位角相等.ab1234得出结论几何语言表述:∵a∥b(已知)∴∠1=∠2(两直线平行,同位角相等)两条平行线被第三条直线所截,同位角相等.平行线性质1:两直线平行,同位角相等.几何语言表述:∵a∥b(已知)∴∠
2、1=∠2(两直线平行,同位角相等)ab1234猜想并讨论猜想:两直线平行,内错角、同旁内角有怎么关系呢?相互讨论一下.性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.平行线的性质:ab1234得出结论利用性质1来说明性质2和性质3ab1234已知:a∥b,请说明∠2=∠3.∵a∥b(已知)∴∠1=∠2()∵∠1=∠3()∴∠2=∠3两直线平行,同位角相等对顶角相等(等量代换)推导如图,(1)∵a∥b(已知)∴∠1__∠2()(2)∵a∥b(已知)∴∠2____∠3(
3、)(3)∵a∥b(已知)∴∠2+∠4=____()=两直线平行,同位角相等=两直线平行,内错角相等180°两直线平行,同旁内角互补cab1234书写方法123ab思考回答如图,已知:a//b那么3与2有什么关系?平行线的性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。例如:如右图因为a∥b,所以∠1=∠2()又∠3=(对顶角相等),所以∠2=∠3.两直线平行,同位角相等∠1c231ba解:a//b(已知)1=2(两直线平行,同位角相等)1+3=180°(邻补角定
4、义)2+3=180°(等量代换)如图:已知a//b,那么2与3有什么关系呢?平行线的性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。结论平行线的性质1(公理)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。平行线的性质:性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.例如图所示是一块梯形铁片的残余部分,量得∠A=100º,∠B=115°,梯形另外两个角各是多少度?解决问题:平行线的“判定
5、”与“性质”有什么不同比一比已知角之间的关系(相等或互补),得到两直线平行的结论是平行线的判定。已知两直线平行,得到角之间的关系(相等或互补)的结论是平行线的性质。1、如图,直线a∥b,∠1=54°,∠2,∠3,∠4各是多少度?解:∵∠2=∠1(对顶角相等)∴∠2=∠1=54°∵a∥b(已知)∴∠4=∠1=54°(两直线平行,同位角相等)∠2+∠3=180°(两直线平行,同旁内角互补)∴∠3=180°-∠2=180°-54°=126°即∠2=54°,∠3=126°,∠4=54°。1234ab你会做吗?EDCBA(已
6、知)(1)∵∠ADE=60°∠B=60°∴∠ADE=∠B(等量代换)∴DE∥BC(同位角相等,两直线平行)(2)∵DE∥BC(已证)∴∠AED=∠C(两直线平行,同位角相等)又∵∠AED=40°(已知)(等量代换)∴∠C=40°2、已知 ∠ADE=60°∠B=60°∠AED=40°证:(1)DE∥BC(2)∠C的度数1、如图,已知平行线AB、CD被直线AE所截(1)从∠1=110o可以知道∠2是多少度?为什么?(2)从∠1=110o可以知道∠3是多少度?为什么?(3)从∠1=110o可以知道∠4是多少度?为什么?一
7、、快速抢答2E134ABDC∠2=110o∵两直线行,内错角相等∠3=110o∵两直线平行,同位角相等∠4=70o∵两直线平行,同旁内角互补一、快速抢答2、如图,一条公路两次拐弯前后两条路互相平行。第一次拐的角∠B是142゜,第二次拐的角∠C是多少度?为什么?BC∠C=142o∵两直线平行,内错角相等一、快速抢答3、如图直线a∥b,直线b垂直于直线c,则直线a垂直于直线c吗?∟∟abc?a⊥b∵两直线平行,同位角相等同位角相等内错角相等同旁内角互补两直线平行判定性质已知得到得到已知小结:图形已知结果理由同位角内错角
8、同旁内角两直线平行同旁内角互补122324))))))abababccc平行线的性质小结a//b两直线平行同位角相等a//b两直线平行内错角相等a//b作业:P22习题5.3第3、6题。再见