欢迎来到天天文库
浏览记录
ID:56930148
大小:1003.50 KB
页数:53页
时间:2020-07-21
《理论力学18机械振动基础课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十八章机械振动基础1动力学振动是日常生活和工程实际中常见的现象。例如:钟摆的往复摆动,汽车行驶时的颠簸,电动机、机床等工作时的振动,以及地震时引起的建筑物的振动等。利:振动给料机弊:磨损,减少寿命,影响强度振动筛引起噪声,影响劳动条件振动沉拔桩机等消耗能量,降低精度等。3.研究振动的目的:消除或减小有害的振动,充分利用振动为人类服务。2.振动的利弊:1.所谓振动就是系统在平衡位置附近作往复运动。2动力学4.振动的分类:单自由度系统的振动按振动系统的自由度分类多自由度系统的振动弹性体的振动按振动产生的原因分类:自由振动:无阻尼的自由振动有阻尼的自由振动,衰减振动强迫振动:无阻尼的强迫振动有
2、阻尼的强迫振动自激振动本章重点讨论单自由度系统的自由振动和强迫振动。3§18–1单自由度系统无阻尼自由振动§18–2求系统固有频率的方法§18–3单自由度系统的有阻尼自由振动§18–4单自由度系统的无阻尼强迫振动§18–5单自由度系统的有阻尼强迫振动§18–6临界转速·减振与隔振的概念第十八章机械振动基础4动力学§18-1 单自由度系统无阻尼自由振动一、自由振动的概念:只在恢复力作用下引起的振动称为自由振动5动力学6动力学运动过程中,总指向物体平衡位置的力称为恢复力。物体受到初干扰后,仅在系统的恢复力作用下在其平衡位置附近的振动称为无阻尼自由振动。质量—弹簧系统:单摆:复摆:7二、单自由度
3、系统无阻尼自由振动微分方程及其解动力学对于任何一个单自由度系统,以q为广义坐标(从平衡位置开始量取),则自由振动的运动微分方程必将是:a,c是与系统的物理参数有关的常数。令则自由振动的微分方程的标准形式:解为:8动力学设t=0时,则可求得:或:C1,C2由初始条件决定为9动力学三、自由振动的特点:A——物块离开平衡位置的最大位移,称为振幅。nt+——相位,决定振体在某瞬时t的位置——初相位,决定振体运动的起始位置。T——周期,每振动一次所经历的时间。f——频率,每秒钟振动的次数,f=1/T。——固有频率,振体在2秒内振动的次数。反映振动系统的动力学特性,只与系统本身的固有参数有关。
4、10动力学无阻尼自由振动的特点是:(2)振幅A和初相位取决于运动的初始条件(初位移和初速度);(1)振动规律为简谐振动;(3)周期T和固有频率仅决定于系统本身的固有参数(m,k,I)。四、其它1.如果系统在振动方向上受到某个常力的作用,该常力只影响静平衡点O的位置,而不影响系统的振动规律,如振动频率、振幅和相位等。11动力学2.弹簧并联系统和弹簧串联系统的等效刚度并联:伸长量相同且有关系并联串联并联串联12动力学3.扭振本质上与弹簧质量系统没有区别,只需将弹簧刚度系数K换为扭杆的扭转刚度系数Kt、将质量m换为对中心轴的转动惯量Jo,以扭转角φ代替x描述运动,即可即:令既有:131.由系统
5、的振动微分方程的标准形式2.静变形法:3.能量法:动力学§18-2求系统固有频率的方法:集中质量在全部重力作用下的静变形由Tmax=Umax,求出14动力学无阻尼自由振动系统为保守系统,机械能守恒。当振体运动到距静平衡位置最远时,速度为零,即系统动能等于零,势能达到最大值(取系统的静平衡位置为零势能点)。当振体运动到静平衡位置时,系统的势能为零,动能达到最大值。如:15动力学能量法是从机械能守恒定律出发,对于计算较复杂的振动系统的固有频率来得更为简便的一种方法。例1图示系统。设轮子无侧向摆动,且轮子与绳子间无滑动,不计绳子和弹簧的质量,轮子是均质的,半径为R,质量为M,重物质量m,试列出系
6、统微幅振动微分方程,求出其固有频率。mgkst=d16动力学解:以x为广义坐标(静平衡位置为坐标原点)对A点列力矩方程则任意位置x时:静平衡时:17动力学应用动量矩定理:由,有振动微分方程:固有频率:18动力学解2:用机械能守恒定律以x为广义坐标(取静平衡位置为原点)以平衡位置为计算势能的零位置,并注意轮心位移x时,弹簧伸长2x因平衡时19动力学由T+U=有:对时间t求导,再消去公因子,得20动力学例2鼓轮:质量M,对轮心回转半径,在水平面上只滚不滑,大轮半径R,小轮半径r,弹簧刚度,重物质量为m,不计轮D和弹簧质量,且绳索不可伸长。求系统微振动的固有频率。解:取静平衡位置O为坐标原点,
7、取C偏离平衡位置x为广义坐标。系统的最大动能为:21动力学系统的最大势能为:22动力学设则有根据Tmax=Umax,解得23动力学§18-3单自由度系统的有阻尼自由振动一、阻尼的概念:阻尼:振动过程中,系统所受的阻力。粘性阻尼:在很多情况下,振体速度不大时,由于介质粘性引起的阻尼认为阻力与速度的一次方成正比,这种阻尼称为粘性阻尼。投影式:c——粘性阻尼系数,简称阻尼系数。24动力学二、有阻尼自由振动微分方程及其解:质量—
此文档下载收益归作者所有