2020年初升高数学衔接专题08 相似形(解析版).doc

2020年初升高数学衔接专题08 相似形(解析版).doc

ID:56891945

大小:3.45 MB

页数:53页

时间:2020-07-20

2020年初升高数学衔接专题08 相似形(解析版).doc_第1页
2020年初升高数学衔接专题08 相似形(解析版).doc_第2页
2020年初升高数学衔接专题08 相似形(解析版).doc_第3页
2020年初升高数学衔接专题08 相似形(解析版).doc_第4页
2020年初升高数学衔接专题08 相似形(解析版).doc_第5页
资源描述:

《2020年初升高数学衔接专题08 相似形(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、初高中天衣无缝衔接教程(2020版)专题08相似形本专题在初中、高中扮演的角色利用三角形一边平行线的判定定理证明两直线平行的一般步骤为:(1)首先观察欲证平行线截哪个三角形;(2)再观察它们截这个三角形的哪两边;(3)最后只须证明这两条边上对应线段成比例即可,当已知中有相等线段时,常利用它们和同一条线段(或其他相等线段)的比作为中间比.常用的有用结论包括:1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.2.推论(1)平行于三角形的一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)平行于三

2、角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(3)三角形的两腰被一条直线所截的对应边成比例.那么这条直线平行于底边.3.三角形的内角平分线性质定理:三角形的内角平分线分对边的长度比等于对应夹角两边的长度比.高中必备知识点1:平行线分线段成比例定理在解决几何问题时,我们常涉及到一些线段的长度、长度比的问题.在数学学习与研究中,我们发现平行线常能产生一些重要的长度比.在一张方格纸上,我们作平行线(如图3.1-1),直线交于点,,另作直线交于点,不难发现我们将这个结论一般化,归纳出平行线分线段

3、成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图,,有.当然,也可以得出.在运用该定理解决问题的过程中,我们一定要注意线段之间的对应关系,是“对应”线段成比例.典型考题【典型例题】已知:∠1=∠2,EG平分∠AEC.(1)如图①,∠MAE=45°,∠FEG=15°,∠NCE=75°.求证:AB∥CD;(2)如图②,∠MAE=140°,∠FEG=30°,当∠NCE=  °时,AB∥CD;(3)如图②,请你直接写出∠MAE、∠FEG、∠NCE之间满足什么关系时,AB∥CD;(4)如图③,请你直接写出∠MAE、∠FEG、∠

4、NCE之间满足什么关系时,AB∥CD.【答案】(1)见解析;(2)当∠NCE=80°时,AB∥CD;(3)当2∠FEG+∠NCE=∠MAE时AB∥CD;(4)当∠MAE+2∠FEG+∠NCE=360°时,AB∥CD.【解析】(1)∵∠1=∠2∴AB∥EF∴∠MAE=∠AEF=45°,且∠FEG=15°∴∠AEG=60°∵EG平分∠AEC∴∠AEG=∠CEG=60°∴∠CEF=75°∵∠ECN=75°∴∠FEC=∠ECN∴EF∥CD且AB∥EF∴AB∥CD(2)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°且∠MAE=14

5、0°∴∠AEF=40°∵∠FEG=30°∴∠AEG=70°∵EG平分∠AEC∴∠GEC=∠AEG=70°∴∠FEC=100°∵AB∥CD,AB∥EF∴EF∥CD∴∠NCE+∠FEC=180°∴∠NCE=80°∴当∠NCE=80°时,AB∥CD(3)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEA+∠FEG=180°﹣∠MAE+∠FEG∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠GEC+∠FEG=180°﹣∠MAE+∠FEG+∠FEG=180°﹣∠MAE+2∠FEG

6、∵AB∥CD,AB∥EF∴EF∥CD∴∠FEC+∠NCE=180°∴180°﹣∠MAE+2∠FEG+∠NCE=180°∴2∠FEG+∠NCE=∠MAE∴当2∠FEG+∠NCE=∠MAE时AB∥CD(4)∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEG﹣∠FEA=∠FEG﹣180°+∠MAE∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠FEA+2∠AEG=180°﹣∠MAE+2∠FEG﹣360°+2∠MAE=∠MAE+2∠FEG﹣180°∵AB∥CD,AB∥EF∴EF∥

7、CD∴∠FEC+∠NCE=180°∴∠MAE+2∠FEG﹣180°+∠NCE=180°∴∠MAE+2∠FEG+∠NCE=360°∴当∠MAE+2∠FEG+∠NCE=360°时,AB∥CD 【变式训练】已知,如图,∠1=∠2,DC∥FE,DE∥AC,求证:FE平分∠BED.【答案】详见解析【解析】∵DC∥FE,∴∠1=∠3,∠CDE=∠4,∵DE∥AC,∴∠2=∠CDE,∴∠2=∠4,∵∠1=∠2,∴∠3=∠4,∴EF是∠BED的平分线 【能力提升】如图,已知AD⊥BC,FG⊥BC,垂足分别为D,G.且∠1=∠2,猜想:DE与AC

8、有怎样的关系?说明理由.【答案】DE∥AC.理由见解析.【解析】DE∥AC.理由如下:∵AD⊥BC,FG⊥BC,∴∠ADG=∠FGC=90°,∴AD∥FG,∴∠1=∠CAD,∵∠1=∠2,∴∠CAD=∠2,∴DE∥AC. 高中必备知识点2:平行线分线段成比例定理

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。