欢迎来到天天文库
浏览记录
ID:56876749
大小:459.00 KB
页数:7页
时间:2020-07-17
《陕西省咸阳市实验中学2019_2020学年高二数学下学期第二次月考试题文2.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、陕西省咸阳市实验中学2019-2020学年高二数学下学期第二次月考试题文一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,则()A.B.C.D.2.在复平面内,复数的共轭复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.“”是“”A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设命题,则为A.B.C.D.5.下列函数中,既是偶函数又是上的单调递减的是A.B.C.D.6.已知,则的大小关系为A.B.C.D.7.函数的图像大致为8.下列函数中,其图像与函数的图像关于直线对
2、称的是A.B.C.D.9.下列命题为真命题有()个①.如果平面内存在一条直线和平面外的一条直线平行,则②.如果平面内存在一条直线和平面垂直,则③.如果一条直线和平面内的任意一条直线垂直,则④.如果平面内存在一条直线和平面平行,则A.1B.2C.3D.410.为计算,设计了右侧的程序框图,则在空白框中应填入A.B.C.D.11.已知是定义域为的奇函数,满足.若,则A.2B.0C.D.5012.已知函数,若存在两个零点,则的取值范围为A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分)13.已知函数是定义在上的奇函数,当时,,则_____.14.观察下列各式:a+b=
3、1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=_____.15.设则_____.16.若函数在区间是减函数,则实数的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)函数的定义域为集合,的值域为集合,.(Ⅰ)求和;(Ⅱ)求、.18.(本小题满分12分)用综合法或分析法证明:(1)如果a,b>0,则lg≥;(2)+>2+2.19.(本小题满分12分)观察以下各等式:sin230°+cos260°+sin30°cos60°=,sin220°+cos250°+sin20°co
4、s50°=,sin215°+cos245°+sin15°cos45°=.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.20.(本小题满分12分)等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.(1)求数列{an}的通项an与前n项和Sn;(2)设bn=(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.21.(本小题满分12分)在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区200名患者的相关信息,得到如表表格:潜伏
5、期(单位:天)[0,2](2,4](4,6](6,8](8,10](10,12](12,14]人数174162502631(1)求这200名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述200名患者中抽取40人,得到如表列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期≤6天潜伏期>6天总计50岁以上(含50岁)2050岁以下9总计40下面临界表有仅供参考:P(χ2≥k)0.150.100.050.0
6、250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.⑴求的取值范围;⑵求中点的轨迹的参数方程.23.[选修4—5:不等式选讲](10分)设函数.(1)画出的图像;⑵当,,求的最小值.数学(文科)参考答案一.选择题BDACCDBBCBAA二.填空题13..14.123.15.116.三.解答题17.(本小
7、题满分10分);,.18.(本小题满分12分)证明: (1)当a,b>0时,有≥,∴lg≥lg,∴lg≥lgab=.(2)要证+>2+2,只要证(+)2>(2+2)2,即2>2,这是显然成立的,所以,原不等式成立.19.(本小题满分12分) 猜想:sin2α+cos2(α+30°)+sinαcos(α+30°)=.证明如下:sin2α+cos2(α+30°)+sinαcos(α+30°)=sin2α+2+sinα=sin2α+cos2α-sinαcosα+sin2α+sinα·c
此文档下载收益归作者所有