(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc

(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc

ID:56873183

大小:347.00 KB

页数:5页

时间:2020-07-17

(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc_第1页
(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc_第2页
(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc_第3页
(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc_第4页
(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc_第5页
资源描述:

《(新课程)高中数学《1.2.1排列》教案1 新人教A版选修2-3.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.2.1排列第一课时一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分

2、步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排

3、法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第1步,确定参加上午活动的同学,从3人中任选1人,有3种方法;第2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的2人中去选,于是有2种方法.根据分步乘法计数原理,在3名同学中选出2名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有3×2=6种,如图1.2一1所示.把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素a,b,。中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab,ac,ba,bc,ca,c

4、b,5共有3×2=6种.问题2.从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法显然,从4个数字中,每次取出3个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第1步,确定百

5、位上的数字,在1,2,3,4这4个数字中任取1个,有4种方法;第2步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的3个数字中去取,有3种方法;第3步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的2个数字中去取,有2种方法.根据分步乘法计数原理,从1,2,3,4这4个不同的数字中,每次取出3个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法,因而共可得到24个不同的三位数,如图1.2一2所示.由此可写出所有的三位数:123,124,132,134,142,143,213,214,231,234,241,243,31

6、2,314,321,324,341,342,412,413,421,423,431,432。同样,问题2可以归结为:从4个不同的元素a,b,c,d中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.共有4×3×2=24种.树形图如下abc     d   b c d a c d  a b d  a b c2.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各

7、不相同)按照5一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同3.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。