资源描述:
《负数的认识和意义.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人们在生活中经常会遇到各种相反意义的量.比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食.为了方便,人们就考虑了相反意义的数来表示.于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负.可见正负数是生产实践中产生的. 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成
2、
3、
4、,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作. 我国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给
5、出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们. 刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数. 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号
6、”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”. 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一. 用不同颜色的数表示正负数的习惯,一直保留到现在.现在一般用红色表示负数,报纸上登载某国经济上出现赤字
7、,表明支出大于收入,财政上亏了钱. 负数是正数的相反数.在实际生活中,我们经常用正数和负数来表示意义相反的两个量.夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷. 在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数.这种引入方法可以在某种特殊的问题情景中给出负数的直观理解.而在古代数学中,负数常常是在代数方程的求解过程中产生的.对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根
8、的概念.3世纪的希腊学者丢番图的著作中,也只给出了方程的正根.然而,在中国的传统数学中,已较早形成负数和相关的运算法则. 除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致.特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则.他在算法启蒙中 负数在国外得到认识和被承认,较之中国要晚得多.在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根.而在欧洲14世纪最有成就的法国数学家丘凯把负数说成
9、是荒谬的数.直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题. 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性.16、17世纪欧洲大多数数学家不承认负数是数.帕斯卡认为从0减去4是纯粹的胡说.帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理.英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年).他对此解释到:因为a>0时,英国著名代数学家德·摩根在183
10、1年仍认为负数是虚构的.他用以下的例子说明这一点:“父亲56岁,其子29岁.问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2.他称此解是荒唐的.当然,欧洲18世纪排斥负数的人已经不多了.随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立. 自然数 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大不相同. 古罗马的数字相当进步,现在许多老式挂钟上还常常使用.实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表1
11、00)、D(代表500)、M(代表1,000).这7个符号位置上不论怎样变化,它所代表的数字都是不变的.它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表