高中数学竞赛教案讲义(2)二次函数与命题.doc

高中数学竞赛教案讲义(2)二次函数与命题.doc

ID:56682208

大小:160.00 KB

页数:9页

时间:2020-07-04

高中数学竞赛教案讲义(2)二次函数与命题.doc_第1页
高中数学竞赛教案讲义(2)二次函数与命题.doc_第2页
高中数学竞赛教案讲义(2)二次函数与命题.doc_第3页
高中数学竞赛教案讲义(2)二次函数与命题.doc_第4页
高中数学竞赛教案讲义(2)二次函数与命题.doc_第5页
资源描述:

《高中数学竞赛教案讲义(2)二次函数与命题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章二次函数与命题一、基础知识1.二次函数:当0时,y=ax2+bx+c或f(x)=ax2+bx+c称为关于x的二次函数,其对称轴为直线x=-,另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。2二次函数的性质:当a>0时,f(x)的图象开口向上,在区间(-∞,x0]上随自变量x增大函数值减小(简称递减),在[x0,-∞)上随自变量增大函数值增大(简称递增)。当a<0时,情况相反。3.当a>0时,方程f(x)=0即ax2+bx+c=0…①和不等式ax2+bx+c>0…②及ax2+bx+c<0…③与函数f

2、(x)的关系如下(记△=b2-4ac)。1)当△>0时,方程①有两个不等实根,设x1,x2(x1

3、xx2}和{x

4、x1

5、x}和空集,f(x)的图象与x轴有唯一公共点。3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R和.f(x)图象与x轴无公共点。当a<0时,请

6、读者自己分析。4.二次函数的最值:若a>0,当x=x0时,f(x)取最小值f(x0)=,若a<0,则当x=x0=时,f(x)取最大值f(x0)=.对于给定区间[m,n]上的二次函数f(x)=ax2+bx+c(a>0),当x0∈[m,n]时,f(x)在[m,n]上的最小值为f(x0);当x0n时,f(x)在[m,n]上的最小值为f(n)(以上结论由二次函数图象即可得出)。定义1能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、

7、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。注1“p或q”复合命题只有当p,q同为假命题时为假,否则为真命题;“p且q”复合命题只有当p,q同时为真命题时为真,否则为假命题;p与“非p”即“p”恰好一真一假。定义2原命题:若p则q(p为条件,q为结论);逆命题:若q则p;否命题:若非p则q;逆否命题:若非q则非p。注2原命题与其逆否命题同真假。一个命题的逆命题和否命题同真假。注3反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。定义3如果命题“若p则q”为真,则记为pq否则记作pq.在命题

8、“若p则q”中,如果已知pq,则p是q的充分条件;如果qp,则称p是q的必要条件;如果pq但q不p,则称p是q的充分非必要条件;如果p不q但pq,则p称为q的必要非充分条件;若pq且qp,则p是q的充要条件。二、方法与例题1.待定系数法。例1设方程x2-x+1=0的两根是α,β,求满足f(α)=β,f(β)=α,f(1)=1的二次函数f(x).2.方程的思想。例2已知f(x)=ax2-c满足-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围。3.利用二次函数的性质。例3已知二次函数f(x)=ax2+bx+c(a,b

9、,c∈R,a0),若方程f(x)=x无实根,求证:方程f(f(x))=x也无实根。4.利用二次函数表达式解题。例4设二次函数f(x)=ax2+bx+c(a>0),方程f(x)=x的两根x1,x2满足01,求证:方程的正根比1小,负根比-1大。6.定义在区间上的二次函数的最值。例6当x取何值时,函数y=取最小值?求出这个最小值

10、。例7设变量x满足x2+bx≤-x(b<-1),并且x2+bx的最小值是,求b的值。7.一元二次不等式问题的解法。例8已知不等式组①②的整数解恰好有两个,求a的取值范围。8.充分性与必要性。例9设定数A,B,C使得不等式A(x-y)(x-z)+B(y-z)(y-x)+C(z-x)(z-y)≥0①对一切实数x,y,z都成立,问A,B,C应满足怎样的条件?(要求写出充分必要条件,而且限定用只涉及A,B,C的等式或不等式表示条件)9.常用结论。定理1若a,b∈R,

11、a

12、-

13、b

14、≤

15、a+b

16、≤

17、a

18、+

19、b

20、.【证明】因为-

21、a

22、≤a≤

23、

24、a

25、,-

26、b

27、≤b≤

28、b

29、,所以-(

30、a

31、+

32、b

33、)≤a+b≤

34、a

35、+

36、b

37、,所以

38、a+b

39、≤

40、a

41、+

42、b

43、(注:若m>0,则-m≤x≤m等价于

44、x

45、≤m).又

46、a

47、=

48、a+b-b

49、≤

50、a+b

51、+

52、-b

53、,即

54、a

55、-

56、b

57、≤

58、a+b

59、.综上定理1得证。定理2若a,b∈R,则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。