资源描述:
《高中数学 4.1.2 圆的一般方程教案 新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.1.2圆的一般方程一、教材分析教材通过将二元二次方程x2+y2+Dx+Ey+F=0配方后化为(x+)2+(y+)2=后只需讨论D2+E2-4F>0、D2+E2-4F=0、D2+E2-4F<0.与圆的标准方程比较可知D2+E2-4F>0时,表示以(-,-)为圆心,为半径的圆;当D2+E2-4F=0时,方程只有实数解x=-,y=-,即只表示一个点(-,-);当D2+E2-4F<0时,方程没有实数解,因而它不表示任何图形.从而得出圆的一般方程的特点:(1)x2和y2的系数相同,不等于0;(2)没有x·y这样的二次项;(3)D2+E2-4F>0.其
2、中(1)和(2)是二元一次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的必要条件,但不是充分条件,只有三条同时满足才是充要条件.同圆的标准方程(x-a)2+(y-b)2=r2含有三个待定系数a、b、r一样,圆的一般方程x2+y2+Dx+Ey+F=0中也含有三个待定系数D、E、F,因此必须具备三个独立条件才能确定一个圆.同样可以用待定系数法求得圆的一般方程.在实际问题中,究竟使用圆的标准方程还是使用圆的一般方程更好呢?应根据具体问题确定.圆的标准方程的特点是明确指出了圆心的坐标和圆的半径,因此,对于由已知条件容易求得圆心坐标和圆的半径或需
3、利用圆心坐标列方程的问题,一般采用圆的标准方程.如果已知条件和圆心坐标、圆的半径都无直接关系,通常采用圆的一般方程;有时两种方程形式都可用时也常采用圆的一般方程的形式,这是因为它可避免解三元二次方程组.圆的标准方程的优点在于明确直观地指出圆心坐标和半径的长.我们知道,圆心确定圆的位置,半径确定圆的大小,它有利于研究圆的有关性质和作图.而由圆的一般方程可以很容易判别一般的二元二次方程中,哪些是圆的方程,哪些不是圆的方程,它们各有自己的优点,在教学过程中,应当使学生熟练地掌握圆的标准方程与圆的一般方程的互化,尤其是由圆的一般方程通过配方化为圆的标准
4、方程,从而求出圆心坐标和半径.要画出圆,就必须要将曲线方程通过配方化为圆的标准方程,然后才能画出曲线的形状.这充分说明了学生熟练地掌握这两种方程互化的重要性和必要性.二、教学目标1.知识与技能(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x2+y2+Dx+Ey+F=0表示圆的条件.(2)能通过配方等手段,把圆的一般方程化为圆的标准方程,能用待定系数法求圆的方程.(3)培养学生探索发现及分析解决问题的实际能力.2.过程与方法通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,培养
5、学生探索发现及分析解决问题的实际能力.3.情感态度与价值观渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索.三、教学重点与难点教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数D、E、F.教学难点:对圆的一般方程的认识、掌握和运用.四、课时安排1课时五、教学设计(一)导入新课思路1.①说出圆心为(a,b),半径为r的圆的标准方程.②学生练习:将以C(a,b)为圆心,r为半径的圆的标准方程展开并整理得x2+y2-2ax-2by+a2+b2-r2=0.③指出:如果D=-2a,
6、E=-2b,F=a2+b2-r2,得到方程x2+y2+Dx+Ey+F=0,这说明圆的方程还可以表示成另外一种非标准方程形式.④能不能说方程x2+y2+Dx+Ey+F=0所表示的曲线一定是圆呢?这就是我们本堂课的内容,教师板书课题:圆的一般方程.思路2.问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程.利用圆的标准方程解决此问题显然有些麻烦,用直线的知识解决又有其简单的局限性,那么这个问题有没有其他的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式.教师板书课题:圆的一般方程.(二)推进新课、新知探究、提出问题①前一章我
7、们研究直线方程用的什么顺序和方法?②这里我们研究圆的方程是否也能类比研究直线方程的顺序和方法呢?③给出式子x2+y2+Dx+Ey+F=0,请你利用配方法化成不含x和y的一次项的式子.④把式子(x-a)2+(y-b)2=r2与x2+y2+Dx+Ey+F=0配方后的式子比较,得出x2+y2+Dx+Ey+F=0表示圆的条件.⑤对圆的标准方程与圆的一般方程作一比较,看各自有什么特点?讨论结果:①以前学习过直线,我们首先学习了直线方程的点斜式、斜截式、两点式、截距式,最后学习一般式.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就
8、是通过把特殊的公式(点斜式、两点式、…)展开整理而得到的.②我们想求圆的一般方程,可仿照直线方程试一试!我们已经学习了圆的标准方程,把标准形式展开,整