欢迎来到天天文库
浏览记录
ID:56676030
大小:1019.00 KB
页数:12页
时间:2020-07-04
《高中数学 3.3.2简单的线性规划教案(二)新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3.2 简单线性规划问题教学过程推进新课[合作探究]师在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x、y件,应如何列式?生由已知条件可得二元一次不等式组:师如何将上述不等式组表示成平面上的区域?生(板演)
2、师对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P(x,y)在上述平面区域中时,所安排的生产任务x、y才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x件,乙产品y件时,工厂获得利润为z,则如何表示它们的关系?生则z=2x+3y.师这样,上述问题就转化为:当x、y满足上述不等式组并且为非负整数时,z的最大值是多少?[教师精讲]师把z=2x+3y变形为,这是斜率为,在y轴上的截距为
3、z的直线.当z变化时可以得到什么样的图形?在上图中表示出来.生当z变化时可以得到一组互相平行的直线.(板演)师由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线,这说明,由平面内的一个点的坐标唯一确定.可以看到直线与表示不等式组的区域的交点坐标满足不等式组,而且当截距最大时,z取最大值,因此,问题转化为当直线与不等式组确定的区域有公共点时,可以在区域内找一个点P,使直线经过P时截距最大.由图可以看出,当直线经过直线x=4与直线x+2y-8=0的交点M(4,2)时,截
4、距最大,最大值为.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元.[知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l0:2x+y=0.然后,作一组与直线l0平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的变化:t=2x+y∈[3,12].若设t=2x+y,式中变量x、y满足下列条件求t的最大值和最小值.分析:从变量x
5、、y所满足的条件来看,变量x、y所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC.作一组与直线l0平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的变化:t=2x+y∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l0:2x+y=0上.作一组与直线l0平行的直线(或平行移动直线l0)l:2x+y=t,t∈R.可知,当l在l0的右上方时,直线l上的点(x,y)满足2x+
6、y>0,即t>0.而且,直线l往右平移时,t随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l的直线中,以经过点B(5,2)的直线l2所对应的t最大,以经过点A(1,1)的直线l1所对应的t最小.所以tmax=2×5+2=12,tmin=2×1+3=3.(2)(3)[合作探究]师诸如上述问题中,不等式组是一组对变量x、y的约束条件,由于这组约束条件都是关于x、y的一次不等式,所以又可称其为线性约束条件.t=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式
7、,我们把它称为目标函数.由于t=2x+y又是关于x、y的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)
8、和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l0.3.观察、分析,平移直线l0,从而找到最优解.4.最后求得目标函数的最大值及最小值.布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;
此文档下载收益归作者所有